Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2024, Vol. 18 Issue (2): 240689   https://doi.org/10.1007/s11706-024-0689-5
  本期目录
A comprehensive review on surface modifications of black phosphorus using biological macromolecules
Chaiqiong Guo1, Xuhong He1, Xuanyu Liu1, Yuhui Wang1, Yan Wei1,2(), Ziwei Liang1,2, Di Huang1,2()
1. Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2. Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
 全文: PDF(5510 KB)   HTML
Abstract

Black phosphorus (BP), a novel two-dimensional material, exhibits remarkable photoelectric characteristics, ultrahigh photothermal conversion efficiency, substantial specific surface area, high carrier mobility, and tunable band gap properties. These attributes have positioned it as a promising candidate in domains such as energy, medicine, and the environment. Nonetheless, its vulnerability to light, oxygen, and water can lead to rapid degradation and loss of crystallinity, thereby limiting its synthesis, preservation, and application. Moreover, BP has demonstrated cytotoxic tendencies, substantially constraining its viability in the realm of biomedicine. Consequently, the imperative for surface modification arises to bolster its stability and biocompatibility, while concurrently expanding its utility spectrum. Biological macromolecules, integral components of living organisms, proffer innate advantages over chemical agents and polymers for the purpose of the BP modifications. This review comprehensively surveys the advancements in utilizing biological macromolecules for the modifications of BP. In doing so, it aims to pave the way for enhanced stability, biocompatibility, and diversified applications of this material.

Key wordsblack phosphorus    tumor therapy    biocompatibility    surface modification    biomacromolecule
收稿日期: 2023-10-09      出版日期: 2024-06-11
Corresponding Author(s): Yan Wei,Di Huang   
 引用本文:   
. [J]. Frontiers of Materials Science, 2024, 18(2): 240689.
Chaiqiong Guo, Xuhong He, Xuanyu Liu, Yuhui Wang, Yan Wei, Ziwei Liang, Di Huang. A comprehensive review on surface modifications of black phosphorus using biological macromolecules. Front. Mater. Sci., 2024, 18(2): 240689.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-024-0689-5
https://academic.hep.com.cn/foms/CN/Y2024/V18/I2/240689
  
Fig.1  
Fig.2  
PropertySpecific descriptionRef.
Optical propertyThe optical absorption range of BP covers the ultraviolet?visible band to the mid-infrared band, and its linear optical absorption is anisotropic. The extinction coefficient along the AC direction is several times larger than that along the ZZ direction.[1617]
Electrical propertyThe electrical conductivity of BP is anisotropic both inside and outside the plane, and the conductivity along the AC direction is larger than that along the ZZ direction. The difference in the electrical conductivity between the BP plane and the edge also leads to different electromagnetic differences.[8,18]
Thermal conductivityThe thermal conductivity of BP is related to the number of layers and the crystal orientation, and the thermal conductivity in the ZZ direction is usually greater than that in the AC direction.[19]
Mechanical propertyThe mechanical resistance of BP is anisotropic both in and out of the plane. The transverse deformation along the ZZ direction is smaller than that along the AC direction, and the friction in the AC direction is higher than that in the ZZ direction.[20]
Photo-thermal propertyUnder laser irradiation, BP can convert light energy into heat energy (with a very high conversion rate), causing rapid temperature rise in the fixed point area, and local excessive heat leads to the inactivation of protein molecules such as intracellular enzymes.[2122]
Photodynamic propertyUnder photon irradiation, BP can activate oxygen molecules into singlet oxygen, resulting in the inactivation of living cell mitochondria, biological enzymes, and so on.[6,23]
Tab.1  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
NanomaterialSurface modification materialCompoundSize/nmSurface charge/mVApplicationRef.
TypeModifier
BPQDsNucleic acidDNAOPC B2/PBCD55–606.9Regeneration of diabetic infected wound[38]
BPNSsVEGF-BP/DNA277 ± 12?2 ± 2Bone repair[39]
BPNSsProteinPlasma proteinBPNS-corona365.3 ± 5.9?8.4Innate immunity and inflammation[40]
BPNSsSerum proteinBP-HSA-PTX300?Chemical photothermal combined anti-tumor[41]
BPQDsCas9CRISPR/Cas9100?17.8Genome editing and gene silencing[42]
BPQDsZein NPBP-GEM@NPs116.8 ± 9.6?13.5Pancreatic tumor[43]
BPQDsCysBPQD/Cys-PDSA??Cancer diagnosis and treatment[44]
BPQDsFKFFKF-OVAp@BP??Checkpoint blocking in melanoma[45]
BPQDsKKFBP@FKK???[46]
BPQDsHoming peptideiRGD-RM@BPQDs50?16Photothermal catalytic synergistic antitumor[47]
BPQDsRGDBPQDs@RGD-EXO105?Angiogenesis[48]
BPQDsRGDBPQDs@PEI + RGD-PEG + DMMA93.4513.1Photodynamic targeted combination therapy[49]
BPNSsGelatinBPNS-gelatin??Photothermal treatment of breast cancer[50]
BPNSsBP/Gel350?10.0 ± 0.5Osteanagenesis[51]
BPNSsBP/GT-MP280?Lupus erythematosus[52]
BPNSsMNBC??Angiocardiopathy[53]
BPNSsPolysaccharideAgaroseBP@hydrogel160.3?12.3Oncotherapy[54]
BPNSsHydrogel/BP/emetine??Photothermal therapy[55]
BPQDsChitosanPEG@CS/BPQDs AM NPs2007.8 ± 2.5Chronic obstructive pulmonary disease[56]
BPNSsCS@BPNSs@CuNPs??Cancer therapy[57]
BPNSsC&BP??Skin wound healing[58]
BPNSsPolylactic acidZnO-BP/PLA??Antibacterial[59]
BPNSsHyaluronic acidCy@HBPN187 ± 7.4?40.2 ± 3.3Breast cancer[60]
BPNSsBPNS-PAMAM@DOX-HA254.0 ± 3.4522.1 ± 5.42Chemical photothermal combined anti-tumor[61]
BPQDsEMPEMP-BP??Antisepsis[62]
BPNSsSodium alginateM-ALG-BP??Bone repair[63]
BPNSsCelluloseCellulose/BPNS??Cancer therapy[64]
BPQDsLiposomeLipidosomeBPQDs@Lipo105.6 ± 6.80.5 ± 0.1Chemical photothermal combined anti-tumor[65]
BPNSsMultifunctional liposomeRV/CAT-BP@MFL256 ± 8330.4Chemical/photothermal/photodynamic synergistic treatment of cancer[66]
BPQDsThermosensitive liposomeBPQDs-vanco@liposome??Subcutaneous abscess infected with drug-resistant bacteria[67]
BPQDsCell membraneTumor cell membraneBPQD-CCNV230?27Cancer therapy[68]
BPNSsM-RP/BP@ZnFe2O4122?Cancer therapy[69]
BPQDsErythrocyte membraneBPQD-RMNV100?13Breast cancer[70]
BPQDsRBC@BPQDs-DOX/KIR63.0 ± 1.6?27.2 ± 0.9Chemical photothermal targeted combined anti-tumor[71]
BPQDsPlatelet membranePLT@BPQDs-HED145 ± 5.0?30.5 ± 2.5Cancer therapy[72]
BPNSsExosomeGel-BP-Exo??Bone repair[73]
BPQDsEVsApt100?Osteanagenesis[74]
Tab.2  
1 L, Li Y, Yu G J, Ye et al.. Black phosphorus field-effect transistors.Nature Nanotechnology, 2014, 9(5): 372–377
https://doi.org/10.1038/nnano.2014.35
2 L, Vaquero-Garzon R, Frisenda A Castellanos-Gomez . Anisotropic buckling of few-layer black phosphorus.Nanoscale, 2019, 11(25): 12080–12086
https://doi.org/10.1039/C9NR03009C
3 A, Favron E, Gaufres F, Fossard et al.. Photooxidation and quantum confinement effects in exfoliated black phosphorus.Nature Materials, 2015, 14(8): 826–832
https://doi.org/10.1038/nmat4299
4 J, Shao H, Xie H, Huang et al.. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy.Nature Communications, 2016, 7(1): 12967
https://doi.org/10.1038/ncomms12967
5 D L, Childers J, Corman M, Edwards et al.. Sustainability challenges of phosphorus and food: solutions from closing the human phosphorus cycle.Bioscience, 2011, 61(2): 117–124
https://doi.org/10.1525/bio.2011.61.2.6
6 H, Wang X, Yang W, Shao et al.. Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation.Journal of the American Chemical Society, 2015, 137(35): 11376–11382
https://doi.org/10.1021/jacs.5b06025
7 X, Zhang Z, Zhang S, Zhang et al.. Size effect on the cytotoxicity of layered black phosphorus and underlying mechanisms.Small, 2017, 13(32): 1701210
https://doi.org/10.1002/smll.201701210
8 J, Qiao X, Kong Z X, Hu et al.. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus.Nature Communications, 2014, 5(1): 4475
https://doi.org/10.1038/ncomms5475
9 L, Shulenburger A D, Baczewski Z, Zhu et al.. The nature of the inter layer interaction in bulk and few-layer phosphorus.Nano Letters, 2015, 15(12): 8170–8175
https://doi.org/10.1021/acs.nanolett.5b03615
10 M, Coros F, Pogacean L, Magerusan et al.. A brief overview on synthesis and applications of graphene and graphene-based nanomaterials.Frontiers of Materials Science, 2019, 13(1): 23–32
https://doi.org/10.1007/s11706-019-0452-5
11 W, Lu H, Nan J, Hong et al.. Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization.Nano Research, 2014, 7(6): 853–859
https://doi.org/10.1007/s12274-014-0446-7
12 J B, Smith D, Hagaman H F Ji . Growth of 2D black phosphorus film from chemical vapor deposition.Nanotechnology, 2016, 27(21): 215602
https://doi.org/10.1088/0957-4484/27/21/215602
13 M, Batmunkh M, Myekhlai A S R, Bati et al.. Microwave-assisted synthesis of black phosphorus quantum dots: efficient electrocatalyst for oxygen evolution reaction.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(21): 12974–12978
https://doi.org/10.1039/C9TA02513H
14 S, Yang K, Zhang A G, Ricciardulli et al.. A delamination strategy for thinly layered defect-free high-mobility black phosphorus flakes.Angewandte Chemie International Edition, 2018, 57(17): 4677–4681
https://doi.org/10.1002/anie.201801265
15 N, Wang N, Mao Z, Wang et al.. Electrochemical delamination of ultralarge few-layer black phosphorus with a hydrogen-free intercalation mechanism.Advanced Materials, 2021, 33(1): 2005815
https://doi.org/10.1002/adma.202005815
16 Q, Zhou Q, Chen Y, Tong et al.. Light-induced ambient degradation of few-layer black phosphorus: mechanism and protection.Angewandte Chemie International Edition, 2016, 55(38): 11437–11441
https://doi.org/10.1002/anie.201605168
17 S, Zhao E, Wang E A, Uzer et al.. Anisotropic moiré optical transitions in twisted monolayer/bilayer phosphorene heterostructures.Nature Communications, 2021, 12: 3947
https://doi.org/10.1038/s41467-021-24272-9
18 Z, Sofer D, Sedmidubsky Š, Huber et al.. Layered black phosphorus: strongly anisotropic magnetic, electronic, and electron-transfer properties.Angewandte Chemie International Edition, 2016, 55(10): 3382–3386
https://doi.org/10.1002/anie.201511309
19 S, Lee F, Yang J, Suh et al.. Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K.Nature Communications, 2015, 6(1): 8573
https://doi.org/10.1038/ncomms9573
20 Z, Cui G, Xie F, He et al.. Atomic-scale friction of black phosphorus: effect of thickness and anisotropic behavior.Advanced Materials Interfaces, 2017, 4(23): 1700998
https://doi.org/10.1002/admi.201700998
21 J, Chen C, Ning Z, Zhou et al.. Nanomaterials as photothermal therapeutic agents.Progress in Materials Science, 2019, 99: 1–26
https://doi.org/10.1016/j.pmatsci.2018.07.005
22 S, Wang J, Shao Z, Li et al.. Black phosphorus-based multimodal nanoagent: showing targeted combinatory therapeutics against cancer metastasis.Nano Letters, 2019, 19(8): 5587–5594
https://doi.org/10.1021/acs.nanolett.9b02127
23 Y, Li Z, Liu Y, Hou et al.. Multifunctional nanoplatform based on black phosphorus quantum dots for bioimaging and photodynamic/photothermal synergistic cancer therapy.ACS Applied Materials & Interfaces, 2017, 9(30): 25098–25106
https://doi.org/10.1021/acsami.7b05824
24 J, Jia Y, Ban K, Liu et al.. Reconfigurable full color display using anisotropic black phosphorus.Advanced Optical Materials, 2021, 9(16): 2100499
https://doi.org/10.1002/adom.202100499
25 W, Chen J, Ouyang H, Liu et al.. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer.Advanced Materials, 2017, 29(5): 1603864
https://doi.org/10.1002/adma.201603864
26 X, Zhu T, Zhang Z, Sun et al.. Black phosphorus revisited: a missing metal-free elemental photocatalyst for visible light hydrogen evolution.Advanced Materials, 2017, 29(17): 1605776
https://doi.org/10.1002/adma.201605776
27 D, Tofan Y, Sakazaki K L W, Mitra et al.. Surface modification of black phosphorus with group 13 Lewis acids for ambient protection and electronic tuning.Angewandte Chemie International Edition, 2021, 60(15): 8329–8336
https://doi.org/10.1002/anie.202100308
28 K L, Utt P, Rivero M, Mehboudi et al.. Intrinsic defects, fluctuations of the local shape, and the photo-oxidation of black phosphorus.ACS Central Science, 2015, 1(6): 320–327
https://doi.org/10.1021/acscentsci.5b00244
29 J, Xiao M, Long X, Zhang et al.. First-principles prediction of the charge mobility in black phosphorus semiconductor nanoribbons.Journal of Physical Chemistry Letters, 2015, 6(20): 4141–4147
https://doi.org/10.1021/acs.jpclett.5b01644
30 Z, Xiong X, Zhang S, Zhang et al.. Bacterial toxicity of exfoliated black phosphorus nanosheets.Ecotoxicology and Environmental Safety, 2018, 161: 507–514
https://doi.org/10.1016/j.ecoenv.2018.06.008
31 P, Li L, Zeng J, Gao et al.. Perturbation of normal algal growth by black phosphorus nanosheets: the role of degradation.Environmental Science & Technology Letters, 2020, 7(1): 35–41
https://doi.org/10.1021/acs.estlett.9b00726
32 N M, Latiff W Z, Teo Z, Sofer et al.. The cytotoxicity of layered black phosphorus.Chemistry, 2015, 21(40): 13991–13995
https://doi.org/10.1002/chem.201502006
33 N, Kong X, Ji J, Wang et al.. ROS-mediated selective killing effect of black phosphorus: mechanistic understanding and its guidance for safe biomedical applications.Nano Letters, 2020, 20(5): 3943–3955
https://doi.org/10.1021/acs.nanolett.0c01098
34 X, Zeng M, Luo G, Liu et al.. Polydopamine-modified black phosphorous nanocapsule with enhanced stability and photothermal performance for tumor multimodal treatments.Advanced Science, 2018, 5(10): 1800510
https://doi.org/10.1002/advs.201800510
35 J, Wang D, Liang Z, Qu et al.. PEGylated-folic acid-modified black phosphorus quantum dots as near-infrared agents for dual-modality imaging-guided selective cancer cell destruction.Nanophotonics, 2020, 9(8): 2425–2435
https://doi.org/10.1515/nanoph-2019-0506
36 H, Wang L, Zhong Y, Liu et al.. A black phosphorus nanosheet-based siRNA delivery system for synergistic photothermal and gene therapy.Chemical Communications, 2018, 54(25): 3142–3145
https://doi.org/10.1039/C8CC00931G
37 G, Qu W, Liu Y, Zhao et al.. Improved biocompatibility of black phosphorus nanosheets by chemical modification.Angewandte Chemie International Edition, 2017, 56(46): 14488–14493
https://doi.org/10.1002/anie.201706228
38 L, Zhou W, Pi S, Cheng et al.. Multifunctional DNA hydrogels with hydrocolloid-cotton structure for regeneration of diabetic infectious wounds.Advanced Functional Materials, 2021, 31(48): 2106167
https://doi.org/10.1002/adfm.202106167
39 Y, Miao Y, Chen J, Luo et al.. Black phosphorus nanosheets-enabled DNA hydrogel integrating 3D-printed scaffold for promoting vascularized bone regeneration.Bioactive Materials, 2023, 21: 97–109
https://doi.org/10.1016/j.bioactmat.2022.08.005
40 J, Mo Q, Xie W, Wei et al.. Revealing the immune perturbation of black phosphorus nanomaterials to macrophages by understanding the protein corona.Nature Communications, 2018, 9(1): 2480
https://doi.org/10.1038/s41467-018-04873-7
41 S, Wang J, Weng X, Fu et al.. Black phosphorus nanosheets for mild hyperthermia-enhanced chemotherapy and chemo-photothermal combination therapy.Nanotheranostics, 2017, 1(2): 208–216
https://doi.org/10.7150/ntno.18767
42 W, Zhou H, Cui L, Ying et al.. Enhanced cytosolic delivery and release of CRISPR/Cas9 by black phosphorus nanosheets for genome editing.Angewandte Chemie International Edition, 2018, 57(32): 10268–10272
https://doi.org/10.1002/anie.201806941
43 S, Geng X, Zhang T, Luo et al.. Combined chemotherapy based on bioactive black phosphorus for pancreatic cancer therapy.Journal of Controlled Release, 2023, 354: 889–901
https://doi.org/10.1016/j.jconrel.2022.12.054
44 H, Chen Z, Liu B, Wei et al.. Redox responsive nanoparticle encapsulating black phosphorus quantum dots for cancer theranostics.Bioactive Materials, 2021, 6(3): 655–665
https://doi.org/10.1016/j.bioactmat.2020.08.034
45 W H, Li J J, Wu L, Wu et al.. Black phosphorous nanosheet: a novel immune-potentiating nanoadjuvant for near-infrared-improved immunotherapy.Biomaterials, 2021, 273: 120788
https://doi.org/10.1016/j.biomaterials.2021.120788
46 H, Wang K, Hu Z, Li et al.. Black phosphorus nanosheets passivation using a tripeptide.Small, 2018, 14(35): 1801701
https://doi.org/10.1002/smll.201801701
47 H, Ding D, Wang H, Huang et al.. Black phosphorus quantum dots as multifunctional nanozymes for tumor photothermal/catalytic synergistic therapy.Nano Research, 2022, 15(2): 1554–1563
https://doi.org/10.1007/s12274-021-3701-8
48 X, Gui H, Zhang R, Zhang et al.. Exosomes incorporated with black phosphorus quantum dots attenuate retinal angiogenesis via disrupting glucose metabolism.Materials Today Bio, 2023, 19: 100602
https://doi.org/10.1016/j.mtbio.2023.100602
49 Z, Liu Z, Xie X, Wu et al.. pH-responsive black phosphorus quantum dots for tumor-targeted photodynamic therapy.Photodiagnosis and Photodynamic Therapy, 2021, 35: 102429
https://doi.org/10.1016/j.pdpdt.2021.102429
50 L, Sutrisno H, Chen Y, Chen et al.. Composite scaffolds of black phosphorus nanosheets and gelatin with controlled pore structures for photothermal cancer therapy and adipose tissue engineering.Biomaterials, 2021, 275: 120923
https://doi.org/10.1016/j.biomaterials.2021.120923
51 Y, Miao X, Shi Q, Li et al.. Engineering natural matrices with black phosphorus nanosheets to generate multi-functional therapeutic nanocomposite hydrogels.Biomaterials Science, 2019, 7(10): 4046–4059
https://doi.org/10.1039/C9BM01072F
52 L, Fan X, Zhang M, Nie et al.. Photothermal responsive microspheres-triggered separable microneedles for versatile drug delivery.Advanced Functional Materials, 2022, 32(13): 2110746
https://doi.org/10.1002/adfm.202110746
53 X, Zhang Y, Cheng R, Liu et al.. Globefish-inspired balloon catheter with intelligent microneedle coating for endovascular drug delivery.Advanced Science, 2022, 9(34): 2204497
https://doi.org/10.1002/advs.202204497
54 M, Qiu D, Wang W, Liang et al.. Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy.Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(3): 501–506
https://doi.org/10.1073/pnas.1714421115
55 J, Xie T, Fan J H, Kim et al.. Emetine-loaded black phosphorus hydrogel sensitizes tumor to photothermal therapy through inhibition of stress granule formation.Advanced Functional Materials, 2020, 30(43): 2003891
https://doi.org/10.1002/adfm.202003891
56 Z, Li G, Luo W P, Hu et al.. Mediated drug release from nanovehicles by black phosphorus quantum dots for efficient therapy of chronic obstructive pulmonary disease.Angewandte Chemie International Edition, 2020, 59(46): 20568–20576
https://doi.org/10.1002/anie.202008379
57 W, Wang Q, Zhang M, Zhang et al.. A novel biodegradable injectable chitosan hydrogel for overcoming postoperative trauma and combating multiple tumors.Carbohydrate Polymers, 2021, 265: 118065
https://doi.org/10.1016/j.carbpol.2021.118065
58 X, Wang X, Tang N, Li et al.. A multifunctional black phosphorus-based adhesive patch intrinsically induces partial EMT for effective burn wound healing.Biomaterials Science, 2022, 11(1): 235–247
https://doi.org/10.1039/D2BM01625G
59 H, Xu H, Xu S, Ma et al.. Bifunctional electrospun poly (L-lactic acid) membranes incorporating black phosphorus nanosheets and nano-zinc oxide for enhanced biocompatibility and antibacterial properties in catheter materials.Journal of the Mechanical Behavior of Biomedical Materials, 2023, 142: 105884
https://doi.org/10.1016/j.jmbbm.2023.105884
60 Y, Li P, Feng C, Wang et al.. Black phosphorus nanophototherapeutics with enhanced stability and safety for breast cancer treatment.Chemical Engineering Journal, 2020, 400: 125851
https://doi.org/10.1016/j.cej.2020.125851
61 F, Peng F, Zhao L, Shan et al.. Black phosphorus nanosheets-based platform for targeted chemo-photothermal synergistic cancer therapy.Colloids and Surfaces B: Biointerfaces, 2021, 198: 111467
https://doi.org/10.1016/j.colsurfb.2020.111467
62 Z, Zhang R, Chen S, Mao et al.. A novel strategy to enhance photocatalytic killing of foodborne pathogenic bacteria by modification of non-metallic monomeric black phosphorus with Elaeagnus mollis polysaccharides.International Journal of Biological Macromolecules, 2023, 242: 125015
https://doi.org/10.1016/j.ijbiomac.2023.125015
63 X, Liu X, He M, Chen et al.. Preparation of black phosphorus@sodium alginate microspheres with bone matrix vesicle structure via electrospraying for bone regeneration.International Journal of Biological Macromolecules, 2024, 265: 131059
https://doi.org/10.1016/j.ijbiomac.2024.131059
64 C, Xing S, Chen M, Qiu et al.. Conceptually novel black phosphorus/cellulose hydrogels as promising photothermal agents for effective cancer therapy.Advanced Healthcare Materials, 2018, 7(7): 1701510
https://doi.org/10.1002/adhm.201701510
65 S, Geng L, Wu H, Cui et al.. Synthesis of lipid-black phosphorus quantum dot bilayer vesicles for near-infrared-controlled drug release.Chemical Communications, 2018, 54(47): 6060–6063
https://doi.org/10.1039/C8CC03423K
66 L, Hai A, Zhang X, Wu et al.. Liposome-stabilized black phosphorus for photothermal drug delivery and oxygen self-enriched photodynamic therapy.ACS Applied Nano Materials, 2020, 3(1): 563–575
https://doi.org/10.1021/acsanm.9b02119
67 L, Zhang Y, Wang J, Wang et al.. Photon-responsive antibacterial nanoplatform for synergistic photothermal-/pharmaco-therapy of skin infection.ACS Applied Materials & Interfaces, 2019, 11(1): 300–310
https://doi.org/10.1021/acsami.8b18146
68 X, Ye X, Liang Q, Chen et al.. Surgical tumor-derived personalized photothermal vaccine formulation for cancer immunotherapy.ACS Nano, 2019, 13(3): 2956–2968
https://doi.org/10.1021/acsnano.8b07371
69 Y, Kang Z, Li F, Lu et al.. Synthesis of red/black phosphorus-based composite nanosheets with a Z-scheme heterostructure for high-performance cancer phototherapy.Nanoscale, 2022, 14(3): 766–779
https://doi.org/10.1039/D1NR07553E
70 X, Liang X, Ye C, Wang et al.. Photothermal cancer immunotherapy by erythrocyte membrane-coated black phosphorus formulation.Journal of Controlled Release, 2019, 296: 150–161
https://doi.org/10.1016/j.jconrel.2019.01.027
71 X, Huang B, Wu J, Li et al.. Anti-tumour effects of red blood cell membrane-camouflaged black phosphorous quantum dots combined with chemotherapy and anti-inflammatory therapy.Artificial Cells, Nanomedicine, and Biotechnology, 2019, 47(1): 968–979
https://doi.org/10.1080/21691401.2019.1584110
72 Y, Shang Q, Wang B, Wu et al.. Platelet-membrane-camouflaged black phosphorus quantum dots enhance anticancer effect mediated by apoptosis and autophagy.ACS Applied Materials & Interfaces, 2019, 11(31): 28254–28266
https://doi.org/10.1021/acsami.9b04735
73 T, Xu Y, Hua P, Mei et al.. Black phosphorus thermosensitive hydrogels loaded with bone marrow mesenchymal stem cell-derived exosomes synergistically promote bone tissue defect repair.Journal of Materials Chemistry B: Materials for Biology and Medicine, 2023, 11(20): 4396–4407
https://doi.org/10.1039/D3TB00341H
74 Y, Wang X, Hu L, Zhang et al.. Bioinspired extracellular vesicles embedded with black phosphorus for molecular recognition-guided biomineralization.Nature Communications, 2019, 10: 2829
https://doi.org/10.1038/s41467-019-10761-5
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed