Empowering progress: unraveling the promising capabilities of Cu2S:ZnS:NiS2 trimetal sulphide thin films
Mahwash Mahar Gul1, Khuram Shahzad Ahmad1(), Andrew Guy Thomas2, Mohamed A. Habila3
1. Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi 46000, Pakistan 2. Department of Materials, Photon Science Institute, Sir Henry Royce Institute, Alan Turing Building, The University of Manchester, Oxford Road, Manchester M13 9PL, UK 3. Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
This study focuses on the synthesis and characterization of a thin film comprising of trimetallic sulphide, Cu2S:ZnS:NiS2. The fabrication process involved the utilization of diethyldithiocarbamate as a sulfur source, employing physical vapor deposition. A range of analytical techniques were employed to elucidate the material’s structure, morphology, and optical characteristics. The thin film exhibited a well-defined crystalline structure with an average crystallite size of 33 nm. X-ray photoelectron spectroscopy provided distinct core level peaks associated with Cu 2p, Zn 2p, Ni 2p, and S 2p. The electrochemical properties were assessed through voltammetry measurements, which demonstrated an impressive specific capacitive of 797 F·g−1. The thin film demonstrated remarkable stability over multiple cycles, establishing it as a highly promising candidate for diverse energy storage applications. In addition, comprehensive investigations were carried out to assess the photocatalytic performance of the fabricated material, particularly its efficacy in the degradation of diverse environmental pollutants. These notable findings emphasize the versatility of trimetal sulphide thin films, expanding their potential beyond energy storage and opening avenues for further research and technological advancements in fields including photocatalysis and beyond.
O M, Ikumapayi E T, Akinlabi A O M, Adeoye et al.. Microfabrication and nanotechnology in manufacturing system — an overview.Materials Today: Proceedings, 2021, 44: 1154–1162 https://doi.org/10.1016/j.matpr.2020.11.233
2
M M, Gul K S Ahmad . Nanocomposite Zr2S3–BaS–Cr2S3 ternary-metal chalcogenide: an impressive supercapacitor electrode and environmental remediant of toxic pollutants.International Journal of Energy Research, 2022, 46(13): 18697–18710 https://doi.org/10.1002/er.8489
3
M M, Gul K S Ahmad . E-beam-deposited Zr2NiS4-GO alloy thin film, a tenacious photocatalyst and efficient electrode for electrical devices.Journal of Materials Science, 2022, 57(14): 7290–7309 https://doi.org/10.1007/s10853-022-07131-w
4
P, Priyadarshini S, Das R Naik . A review on metal-doped chalcogenide films and their effect on various optoelectronic properties for different applications.RSC Advances, 2022, 12(16): 9599–9620 https://doi.org/10.1039/D2RA00771A
5
L F, Wu J P Hofmann . High-entropy transition metal chalcogenides as electrocatalysts for renewable energy conversion.Current Opinion in Electrochemistry, 2022, 34: 101010 https://doi.org/10.1016/j.coelec.2022.101010
6
M, Irfan S, Azam A, Dahshan et al.. First-principles study of opto-electronic and thermoelectric properties of SrCdSnX4 (X = S, Se, Te) alkali metal chalcogenides.Computational Condensed Matter, 2022, 30: e00625 https://doi.org/10.1016/j.cocom.2021.e00625
7
W, Khan H U, Din S, Azam et al.. First-principles investigations of metal chalcogenides Tl2Hg3X4 (X = S, Se, Te) for advanced optoelectronic and thermoelectric applications.Journal of Solid State Chemistry, 2022, 312: 123199 https://doi.org/10.1016/j.jssc.2022.123199
8
M M, Abouelela G, Kawamura A Matsuda . Metal chalcogenide-based photoelectrodes for photoelectrochemical water splitting.Journal of Energy Chemistry, 2022, 73: 189–213 https://doi.org/10.1016/j.jechem.2022.05.022
S S, Hegde B J, Fernandes V, Talapatadur et al.. Impedance spectroscopy analysis of SnS chalcogenide semiconductors.Materials Today: Proceedings, 2022, 62(8): 5648–5652 https://doi.org/10.1016/j.matpr.2022.04.966
11
A A, Tedstone Jumah A, Bin E, Asuquo et al.. Transition metal chalcogenide bifunctional catalysts for chemical recycling by plastic hydrocracking: a single-source precursor approach.Royal Society Open Science, 2022, 9(3): 211353 https://doi.org/10.1098/rsos.211353
12
J C, Sarker G Hogarth . Dithiocarbamate complexes as single source precursors to nanoscale binary, ternary and quaternary metal sulfides.Chemical Reviews, 2021, 121(10): 6057–6123 https://doi.org/10.1021/acs.chemrev.0c01183
13
G, Hogarth D C Onwudiwe . Copper dithiocarbamates: coordination chemistry and applications in materials science, biosciences and beyond.Inorganics, 2021, 9(9): 70 https://doi.org/10.3390/inorganics9090070
14
J L, Holechek H M E, Geli M N, Sawalhah et al.. A global assessment: can renewable energy replace fossil fuels by 2050.Sustainability, 2022, 14(8): 4792 https://doi.org/10.3390/su14084792
15
Y Y, Zhang I, Khan M W Zafar . Assessing environmental quality through natural resources, energy resources, and tax revenues.Environmental Science and Pollution Research, 2022, 29(59): 89029–89044 https://doi.org/10.1007/s11356-022-22005-z
16
A, Rehman H Y, Ma I, Ozturk et al.. Revealing the dynamic effects of fossil fuel energy, nuclear energy, renewable energy, and carbon emissions on Pakistan’s economic growth.Environmental Science and Pollution Research, 2022, 29(32): 48784–48794 https://doi.org/10.1007/s11356-022-19317-5
17
S A, Ali T Ahmad . Chemical strategies in molybdenum based chalcogenides nanostructures for photocatalysis.International Journal of Hydrogen Energy, 2022, 47(68): 29255–29283 https://doi.org/10.1016/j.ijhydene.2022.06.269
18
M M, Gul K S Ahmad . Electron beam deposited (Cu2S–CdS)GO thin film as active electrode for supercapacitor and enhanced photocatalyst for water remediation.International Journal of Energy Research, 2022, 46(7): 9371–9388 https://doi.org/10.1002/er.7811
19
R D, Kumar S, Nagarani V, Sethuraman et al.. Investigations of conducting polymers, carbon materials, oxide and sulfide materials for supercapacitor applications: a review.Chemical Papers, 2022, 76(6): 3371–3385 https://doi.org/10.1007/s11696-022-02124-0
20
M M, Gul K S, Ahmad A G, Thomas et al.. The electrochemical performance of lanthanum indium sulphide photoactive electrode in a simple yet efficacious photoelectrochemical cell.Journal of Physics and Chemistry of Solid, 2023, 179: 111378 https://doi.org/10.1016/j.jpcs.2023.111378
21
M M, Gul K S, Ahmad A G, Thomas et al.. Remarkable energy storage and photocatalytic remediation potential of novel graphene oxide loaded bi-metal sulphide Ba4Fe2S6-GO nanocomposite thin film.Optical Materials, 2023, 138: 113682 https://doi.org/10.1016/j.optmat.2023.113682
22
M M, Gul K S, Ahmad A G, Thomas et al.. Efficacious performance of photoactive electrode In:SnO2/Er2S3:In2S3 in a photoelectrochemical system.Applied Materials Today, 2023, 32: 101797 https://doi.org/10.1016/j.apmt.2023.101797
23
S, Majid K S Ahmad . Analysis of dopant concentration effect on optical and morphological properties of PVD coated Cu-doped Ni3S2 thin films.Optik, 2019, 187: 152–163 https://doi.org/10.1016/j.ijleo.2019.05.025
24
S, Sharif K S Ahmad . Synthesis of palladium diethyldithiocarbamate complexes as precursor for the deposition of un-doped and copper sulfide doped thin films by a facile physical vapour deposition technique.Optik, 2020, 218: 165014 https://doi.org/10.1016/j.ijleo.2020.165014
25
J, Anwar K S, Ahmad S B, Jaffri et al.. Doped antimony chalcogenide semiconductor thin films fabrication by physical vapour deposition: elucidation of optoelectronic and electrochemical features.Canadian Metallurgical Quarterly, 2022, 61(2): 145–154 https://doi.org/10.1080/00084433.2022.2034710
26
M H, Habibi J Parhizkar . Cobalt ferrite nano-composite coated on glass by Doctor Blade method for photo-catalytic degradation of an azo textile dye Reactive Red 4: XRD, FESEM and DRS investigations.Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, 150: 879–885 https://doi.org/10.1016/j.saa.2015.06.040
27
C, Karthikeyan Kumar R, Dhilip Raj J, Anandha et al.. One pot and large-scale synthesis of nanostructured metal sulfides: synergistic effect on supercapacitor performance.Energy & Environment, 2020, 31(8): 1367–1384 https://doi.org/10.1177/0958305X19899373
28
L, Chen M, Hosseini A, Fakhri et al.. Synthesis and characterization of Cr2S3–Bi2O3 nanocomposites: photocatalytic, quenching, repeatability, and antibacterial performances.Journal of Materials Science: Materials in Electronics, 2019, 30(14): 13067–13075 https://doi.org/10.1007/s10854-019-01668-4
29
T T, Ghogare V C, Lokhande T, Ji et al.. A graphene oxide/samarium sulfide (GO/Sm2S3) composite thin film: preparation and electrochemical study.Surfaces and Interfaces, 2020, 19: 100507 https://doi.org/10.1016/j.surfin.2020.100507
30
A, Gahtar S, Benramache C, Zaouche et al.. Effect of temperature on the properties of nickel sulfide films performed by spray pyrolysis technique.Advances in Materials Science, 2020, 20(3): 36–51 https://doi.org/10.2478/adms-2020-0015
31
M, Mousavi-Kamazani M, Salavati-Niasari M Sadeghinia . Synthesis and characterization of Cu2S nanostructures via cyclic microwave radiation.Superlattices and Microstructures, 2013, 63: 248–257 https://doi.org/10.1016/j.spmi.2013.08.023
32
L Å, Näslund P O A, Persson J Rosén . X-ray photoelectron spectroscopy of Ti3AlC2, Ti3C2Tz, and TiC provides evidence for the electrostatic interaction between laminated layers in MAX-phase materials.The Journal of Physical Chemistry C, 2020, 124(50): 27732–27742 https://doi.org/10.1021/acs.jpcc.0c07413
33
C, Lian K, Liu H, Liu et al.. Impurity effects on charging mechanism and energy storage of nanoporous supercapacitors.The Journal of Physical Chemistry C, 2017, 121(26): 14066–14072 https://doi.org/10.1021/acs.jpcc.7b04869
34
Q, Jiang N, Kurra M, Alhabeb et al.. All pseudocapacitive MXene-RuO2 asymmetric supercapacitors.Advanced Energy Materials, 2018, 8(13): 1703043 https://doi.org/10.1002/aenm.201703043
35
M M, Gul K S Ahmad . Bioelectrochemical systems: sustainable bio-energy powerhouses.Biosensors & Bioelectronics, 2019, 142: 111576 https://doi.org/10.1016/j.bios.2019.111576
36
C, Li Z, Huang J, Lin et al.. Excellent-moisture-resistance fluorinated polyimide composite film and self-powered acoustic sensing.ACS Applied Materials & Interfaces, 2023, 15(29): 35459–35468 https://doi.org/10.1021/acsami.3c05154
37
Y, Wang W, Zhai J, Li et al.. Friction behavior of biodegradable electrospun polyester nanofibrous membranes.Tribology International, 2023, 188: 108891 https://doi.org/10.1016/j.triboint.2023.108891
38
X L, Xu Y, Dong Q W, Hu et al.. Electrochemical hydrogen storage materials: state-of-the-art and future perspectives.Energy & Fuels, 2024, 38(9): 7579–7613 https://doi.org/10.1021/acs.energyfuels.3c05138
39
X L, Guo Q L, Peng K, Shin et al.. Construction of a composite Sn-DLC artificial protective layer with hierarchical interfacial coupling based on gradient coating technology toward robust anodes for Zn metal batteries.Advanced Energy Materials, 2024, 14: 2402015 https://doi.org/10.1002/aenm.202402015
40
Y, Wu H F, Wu Y, Zhao et al.. Metastable structures with composition fluctuation in cuprate superconducting films grown by transient liquid-phase assisted ultra-fast heteroepitaxy.Materials Today Nano, 2023, 24: 100429 https://doi.org/10.1016/j.mtnano.2023.100429
41
L, Pan F P, Wang Y S, He , et al.. Reassessing self-healing in metallized film capacitors: a focus on safety and damage analysis. IEEE Transactions on Dielectrics and Electrical Insulation, 2024, doi:10.1109/TDEI.2024.3357441 (in press)