Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2024, Vol. 18 Issue (2): 240686   https://doi.org/10.1007/s11706-024-0686-8
  本期目录
A new TiO2 nanorods/MoTe2 quantum dots/Al2O3 composite photocatalyst for efficient photoelectrochemical water splitting under simulated sunlight
Jie Meng1,3, Hongmei Liu1(), Sainan Zhang3, Baogui Ye1, Min Feng4, Daoai Wang2,3()
1. School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
2. State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
3. Qingdao Center of Resource Chemistry and New Materials, Qingdao 266100, China
4. Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 265503, China
 全文: PDF(6854 KB)   HTML
Abstract

The solar-to-hydrogen conversion using the photoelectrochemical (PEC) method is a practical approach to producing clean energy. However, it relies on the availability of photocatalyst materials. In this work, a novel photocatalyst comprising molybdenum telluride quantum dots (MoTe2 QDs)-modified titanium dioxide nanorods (TiO2 NRs) was prepared for the enhancement of the PEC water splitting performance after combination with a Al2O3 layer using the atomic layer deposition (ALD) technique. MoTe2 QDs were initially prepared, and then they were loaded onto TiO2 NRs using a warm water bath-based heating method. After a layer of Al2O3 was deposited onto resulted TiO2 NRs/MoTe2 QDs, the composite TiO2 NRs/MoTe2 QDs/Al2O3 was finally obtained. Under simulated sunlight (100 mW·cm−2), such a composite exhibited a maximum photocurrent density of 2.25 mA·cm−2 at 1.23 V (versus RHE) and an incident photon-to-electron conversion efficiency of 69.88% at 380 nm, which are 4.33 and 6.66 times those of pure TiO2 NRs, respectively. Therefore, the composite photocatalyst fabricated in this work may have promising application in the field of PEC water splitting, solar cells and other photocatalytic devices.

Key wordsMoTe2 quantum dot    TiO2 nanorod    Al2O3    atomic layer deposition    photoelectrochemistry
收稿日期: 2024-01-04      出版日期: 2024-06-18
Corresponding Author(s): Hongmei Liu,Daoai Wang   
 引用本文:   
. [J]. Frontiers of Materials Science, 2024, 18(2): 240686.
Jie Meng, Hongmei Liu, Sainan Zhang, Baogui Ye, Min Feng, Daoai Wang. A new TiO2 nanorods/MoTe2 quantum dots/Al2O3 composite photocatalyst for efficient photoelectrochemical water splitting under simulated sunlight. Front. Mater. Sci., 2024, 18(2): 240686.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-024-0686-8
https://academic.hep.com.cn/foms/CN/Y2024/V18/I2/240686
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
1 A, Naldoni M, Altomare G, Zoppellaro et al.. Photocatalysis with reduced TiO2: from black TiO2 to cocatalyst-free hydrogen production.ACS Catalysis, 2019, 9(1): 345–364
https://doi.org/10.1021/acscatal.8b04068
2 P S, Basavarajappa S B, Patil N, Ganganagappa et al.. Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis.International Journal of Hydrogen Energy, 2020, 45(13): 7764–7778
https://doi.org/10.1016/j.ijhydene.2019.07.241
3 P, Kaewkam A, Kanchanapaetnukul J, Khamyan et al.. UV-assisted TiO2 photocatalytic degradation of virgin LDPE films: effect of UV-A, UV-C, and TiO2.Journal of Environmental Chemical Engineering, 2022, 10(4): 108131
https://doi.org/10.1016/j.jece.2022.108131
4 B, Wang S, Shen S S Mao . Black TiO2 for solar hydrogen conversion.Journal of Materiomics, 2017, 3(2): 96–111
https://doi.org/10.1016/j.jmat.2017.02.001
5 Z, Jiao M, Shang J, Liu et al.. The charge transfer mechanism of Bi modified TiO2 nanotube arrays: TiO2 serving as a “charge-transfer-bridge”.Nano Energy, 2017, 31: 96–104
https://doi.org/10.1016/j.nanoen.2016.11.026
6 J, Peng L, Zhang Y, Liu et al.. New cambered-surface based drip generator: a drop of water generates 50 µA current without pre-charging.Nano Energy, 2022, 102: 107694
https://doi.org/10.1016/j.nanoen.2022.107694
7 Y, Kameya K, Torii S, Hirai et al.. Photocatalytic soot oxidation on TiO2 microstructured substrate.Chemical Engineering Journal, 2017, 327: 831–837
https://doi.org/10.1016/j.cej.2017.06.094
8 M L A, Kumari L G, Devi G, Maia et al.. Mechanochemical synthesis of ternary heterojunctions TiO2(A)/TiO2(R)/ZnO and TiO2(A)/TiO2(R)/SnO2 for effective charge separation in semiconductor photocatalysis: A comparative study.Environmental Research, 2022, 203: 111841
https://doi.org/10.1016/j.envres.2021.111841
9 X, Zhang Y, Xiao S, Cao et al.. Ternary TiO2@Bi2O3@TiO2 hollow photocatalyst drives robust visible-light photocatalytic performance and excellent recyclability.Journal of Cleaner Production, 2022, 352: 131560
https://doi.org/10.1016/j.jclepro.2022.131560
10 N, Justh G J, Mikula L P, Bakos et al.. Photocatalytic properties of TiO2@polymer and TiO2@carbon aerogel composites prepared by atomic layer deposition.Carbon, 2019, 147: 476–482
https://doi.org/10.1016/j.carbon.2019.02.076
11 L, Yao D, Wei Y, Ni et al.. Surface localization of CdZnS quantum dots onto 2D g-C3N4 ultrathin microribbons: highly efficient visible light-induced H2-generation.Nano Energy, 2016, 26: 248–256
https://doi.org/10.1016/j.nanoen.2016.05.031
12 Y, Maki Y, Ide T Okada . Water-floatable organosilica particles for TiO2 photocatalysis.Chemical Engineering Journal, 2016, 299: 367–372
https://doi.org/10.1016/j.cej.2016.04.059
13 Y, Wang J, Liu Y, Ozaki et al.. Effect of TiO2 on altering direction of interfacial charge transfer in a TiO2‒Ag‒MPY‒FePc system by SERS.Angewandte Chemie International Edition, 2019, 58(24): 8172–8176
https://doi.org/10.1002/anie.201900589
14 Q, Wang J, Huang H, Sun et al.. MoS2 quantum dots@TiO2 nanotube arrays: an extended-spectrum-driven photocatalyst for solar hydrogen evolution.ChemSusChem, 2018, 11(10): 1708–1721
https://doi.org/10.1002/cssc.201800379
15 M D, Lee G J, Lee I, Nam et al.. Exploring the effect of cation vacancies in TiO2: lithiation behavior of n-type and p-type TiO2.ACS Applied Materials & Interfaces, 2022, 14(5): 6560–6569
https://doi.org/10.1021/acsami.1c20265
16 W, Ahmad A, Khan N, Ali et al.. Photocatalytic degradation of crystal violet dye under sunlight by chitosan-encapsulated ternary metal selenide microspheres.Environmental Science and Pollution Research International, 2021, 28(7): 8074–8087
https://doi.org/10.1007/s11356-020-10898-7
17 O, Cleary F, Purcell-Milton A, Vandekerckhove et al.. Chiral and luminescent TiO2 nanoparticles.Advanced Optical Materials, 2017, 5(16): 1601000
https://doi.org/10.1002/adom.201601000
18 J, Yan H, Wu H, Chen et al.. Fabrication of TiO2/C3N4 heterostructure for enhanced photocatalytic Z-scheme overall water splitting.Applied Catalysis B: Environmental, 2016, 191: 130–137
https://doi.org/10.1016/j.apcatb.2016.03.026
19 T, Hirai K, Suzuki I Komasawa . Preparation and photocatalytic properties of composite CdS nanoparticles–titanium dioxide particles.Journal of Colloid and Interface Science, 2001, 244(2): 262–265
https://doi.org/10.1006/jcis.2001.7982
20 I, Jeong Y H, Park S, Bae et al.. Solution-processed ultrathin TiO2 compact layer hybridized with mesoporous TiO2 for high-performance perovskite solar cells.ACS Applied Materials & Interfaces, 2017, 9(42): 36865–36874
https://doi.org/10.1021/acsami.7b11901
21 L, Palmolahti H, Ali-Löytty M, Hannula et al.. Pinhole-resistant nanocrystalline rutile TiO2 photoelectrode coatings.Acta Materialia, 2022, 239: 118257
https://doi.org/10.1016/j.actamat.2022.118257
22 W, Chen R, Liang J, Wang et al.. Enhanced photoresponsivity and hole mobility of MoTe2 phototransistors by using an Al2O3 high-κ gate dielectric.Science Bulletin, 2018, 63(15): 997–1005
https://doi.org/10.1016/j.scib.2018.06.009
23 M J, Valero-Romero J G, Santaclara L, Oar-Arteta et al.. Photocatalytic properties of TiO2 and Fe-doped TiO2 prepared by metal organic framework-mediated synthesis.Chemical Engineering Journal, 2019, 360: 75–88
https://doi.org/10.1016/j.cej.2018.11.132
24 J H, Sung H, Heo S, Si et al.. Coplanar semiconductor-metal circuitry defined on few-layer MoTe2 via polymorphic heteroepitaxy.Nature Nanotechnology, 2017, 12(11): 1064–1070
https://doi.org/10.1038/nnano.2017.161
25 E, Konstantinova A, Minnekhanov A, Beltiukov et al.. Unveiling point defects in titania mesocrystals: a combined EPR and XPS study.New Journal of Chemistry, 2018, 42(18): 15184–15189
https://doi.org/10.1039/C8NJ03196G
26 R H, Temperton A, Gibson J N O’Shea . In situ XPS analysis of the atomic layer deposition of aluminium oxide on titanium dioxide.Physical Chemistry Chemical Physics, 2019, 21(3): 1393–1398
https://doi.org/10.1039/C8CP06912C
27 J, Chen J, He Z, Yin et al.. One-pot synthesis of porous TiO2/BiOI adsorbent with high removal efficiency and excellent recyclability towards tetracyclines.Ceramics International, 2023, 49(13): 22139–22148
https://doi.org/10.1016/j.ceramint.2023.04.041
28 C, Huo T, Wang Z, Yin et al.. Tuning the thickness of 3D inverse opal ZnO/ZnS heterojunction promotes excellent photocatalytic hydrogen evolution.Ceramics International, 2023, 49(9): 14673–14680
https://doi.org/10.1016/j.ceramint.2023.01.059
29 B, Zhang D, Wang S, Jiao et al.. TiO2-X mesoporous nanospheres/BiOI nanosheets S-scheme heterostructure for high efficiency, stable and unbiased photocatalytic hydrogen production.Chemical Engineering Journal, 2022, 446: 137138
https://doi.org/10.1016/j.cej.2022.137138
30 G H, Han D H, Keum J, Zhao et al.. Absorption dichroism of monolayer 1T′-MoTe2 in visible range.2D Materials, 2016, 3(3): 031010
https://doi.org/10.1088/2053-1583/3/3/031010
31 J, Gao X, Lian Z, Chen et al.. Multifunctional MoTe2 Fe-FET enabled by ferroelectric polarization-assisted charge trapping.Advanced Functional Materials, 2022, 32(17): 2110415
https://doi.org/10.1002/adfm.202110415
32 M, Synowiec A, Micek-Ilnicka K, Szczepanowicz et al.. Functionalized structures based on shape-controlled TiO2.Applied Surface Science, 2019, 473: 603–613
https://doi.org/10.1016/j.apsusc.2018.12.114
33 Y, Lee N, Ling D, Kim et al.. Heterophase boundary for active hydrogen evolution in MoTe2.Advanced Functional Materials, 2022, 32(10): 2105675
https://doi.org/10.1002/adfm.202105675
34 D P, Leimkuhl C L, Donley M N Jackson . Controlling nucleation sites for metal oxide film growth on glassy carbon via electrochemical preoxidation.ACS Applied Materials & Interfaces, 2024, 16(2): 2868–2876
https://doi.org/10.1021/acsami.3c13417
35 L, Chen J G, Connell A, Nie et al.. Lithium metal protected by atomic layer deposition metal oxide for high performance anodes.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(24): 12297–12309
https://doi.org/10.1039/C7TA03116E
36 Y, Nam J H, Lim K C, Ko et al.. Photocatalytic activity of TiO2 nanoparticles: a theoretical aspect.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(23): 13833–13859
https://doi.org/10.1039/C9TA03385H
37 J J M, Vequizo H, Matsunaga T, Ishiku et al.. Trapping-induced enhancement of photocatalytic activity on brookite TiO2 powders: comparison with anatase and rutile TiO2 powders.ACS Catalysis, 2017, 7(4): 2644–2651
https://doi.org/10.1021/acscatal.7b00131
38 Q, Guo Z, Ma C, Zhou et al.. Single molecule photocatalysis on TiO2 surfaces.Chemical Reviews, 2019, 119(20): 11020–11041
https://doi.org/10.1021/acs.chemrev.9b00226
39 Y, Huang Q, Shang D, Wang et al.. Effects of electronic structure and interfacial interaction between metal-quinoline complexes and TiO2 on visible light photocatalytic activity of TiO2.Applied Catalysis B: Environmental, 2016, 187: 59–66
https://doi.org/10.1016/j.apcatb.2016.01.025
40 Q, Guo C, Zhou Z, Ma et al.. Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges.Advanced Materials, 2019, 31(50): 1901997
https://doi.org/10.1002/adma.201901997
41 X, Ma C, Wang F, Wu et al.. TiO2 nanomaterials in photoelectrochemical and electrochemiluminescent biosensing.Topics in Current Chemistry, 2020, 378(2): 28
https://doi.org/10.1007/s41061-020-0291-y
42 W, Jiao J, Zhu Y, Ling et al.. Photoelectrochemical properties of MOF-induced surface-modified TiO2 photoelectrode.Nanoscale, 2018, 10(43): 20339–20346
https://doi.org/10.1039/C8NR06471G
43 M, Motola R, Zazpe L, Hromadko et al.. Anodic TiO2 nanotube walls reconstructed: inner wall replaced by ALD TiO2 coating.Applied Surface Science, 2021, 549: 149306
https://doi.org/10.1016/j.apsusc.2021.149306
44 W J, Yin B, Wen C, Zhou et al.. Excess electrons in reduced rutile and anatase TiO2.Surface Science Reports, 2018, 73(2): 58–82
https://doi.org/10.1016/j.surfrep.2018.02.003
45 M T, Yilleng E C, Gimba G I, Ndukwe et al.. Batch to continuous photocatalytic degradation of phenol using TiO2 and Au‒Pd nanoparticles supported on TiO2.Journal of Environmental Chemical Engineering, 2018, 6(5): 6382–6389
https://doi.org/10.1016/j.jece.2018.09.048
46 R P, Cavalcante R F, Dantas B, Bayarri et al.. Photocatalytic mechanism of metoprolol oxidation by photocatalysts TiO2 and TiO2 doped with 5% B: primary active species and intermediates.Applied Catalysis B: Environmental, 2016, 194: 111–122
https://doi.org/10.1016/j.apcatb.2016.04.054
47 F, Alcaide R V, Genova G, Álvarez et al.. Platinum-catalyzed Nb-doped TiO2 and Nb-doped TiO2 nanotubes for hydrogen generation in proton exchange membrane water electrolyzers.International Journal of Hydrogen Energy, 2020, 45(40): 20605–20619
https://doi.org/10.1016/j.ijhydene.2020.01.057
48 X, Zhang P, Yan B, Zhao et al.. Selective hydrodeoxygenation of guaiacol to phenolics by Ni/anatase TiO2 catalyst formed by cross-surface migration of Ni and TiO2.ACS Catalysis, 2019, 9(4): 3551–3563
https://doi.org/10.1021/acscatal.9b00400
49 X, Li J, Tao X, Wang et al.. Networks of high performance triboelectric nanogenerators based on liquid‒solid interface contact electrification for harvesting low-frequency blue energy.Advanced Energy Materials, 2018, 8(21): 1800705
https://doi.org/10.1002/aenm.201800705
50 X, Xia S, Peng Y, Bao et al.. Control of interface between anatase TiO2 nanoparticles and rutile TiO2 nanorods for efficient photocatalytic H2 generation.Journal of Power Sources, 2018, 376: 11–17
https://doi.org/10.1016/j.jpowsour.2017.11.067
51 W, Zhu Z, Xia B, Shi et al.. Water-triggered conversion of Cs4PbBr6@TiO2 into Cs4PbBr6/CsPbBr3@TiO2 three-phase heterojunction for enhanced visible-light-driven photocatalytic degradation of organic pollutants.Materials Today Chemistry, 2022, 24: 100880
https://doi.org/10.1016/j.mtchem.2022.100880
52 Y, Wang J, Xiao H, Zhu et al.. Structural phase transition in monolayer MoTe2 driven by electrostatic doping.Nature, 2017, 550(7677): 487–491
https://doi.org/10.1038/nature24043
53 G, Wu X, Wang Y, Chen et al.. MoTe2 p–n homojunctions defined by ferroelectric polarization.Advanced Materials, 2020, 32(16): 1907937
https://doi.org/10.1002/adma.201907937
[1] FMS-24686-OF-Mj_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed