Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2008, Vol. 2 Issue (4) : 417-425    https://doi.org/10.1007/s11706-008-0063-z
Characteristics and degradation of chitosan/cellulose acetate microspheres with different model drugs
ZHOU Hui-yun1, CHEN Xi-guang2
1.The Chemical Engineering & Pharmaceutics College, Henan University of Science and Technology;College of Marine Life Science, Ocean University of China; 2.College of Marine Life Science, Ocean University of China;
 Download: PDF(351 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In this study, chitosan/cellulose acetate microspheres (CCAM) were prepared by W/O/W emulsification and solvent evaporation as a drug delivery system. The microspheres were spherical, free-flowing and non-aggregated. The CCAM had good flow and suspension ability. The loading efficiency of different model drugs increased with the increasing hydrophobicity of the drug. The loading efficiency of 6-mercaptopurine (6-MP) was more than 30% whereas that of ranitidine hydrochloride (RT) or acetaminophen (ACP) was only 10%. The pH values of solution affected the swelling ability of CCAM and the relative humidity had little effect on the characteristics of CCAM when it was not more than 75%. The CCAM system had a good effect on the controlled release of different model drugs. However, the release rate became slower with the increase of the hydrophobicity of drugs. The release rate of CCAM loaded with hydrophilic RT was almost 60% during 48 h and the release rate of CCAM loaded with hydrophobic drug of 6-MP was not more than 30%. In the meantime, the CCAM system was degradable in vitro and the degradation rate was faster in lysozyme solution than that in the medium of PBS. So the CCAM system was a degradable promising drug delivery system especially for hydrophobic drugs.
Issue Date: 05 December 2008
 Cite this article:   
CHEN Xi-guang,ZHOU Hui-yun. Characteristics and degradation of chitosan/cellulose acetate microspheres with different model drugs[J]. Front. Mater. Sci., 2008, 2(4): 417-425.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-008-0063-z
https://academic.hep.com.cn/foms/EN/Y2008/V2/I4/417
1 Agnihotri S A, Aminabhavi T M . Controlled release of clozapinethrough chitosan microparticles prepared by a novel method. Journal of Controlled Release, 2004, 96(2): 245–259.
doi:10.1016/j.jconrel.2004.01.025
2 Kofuji K, Qian C J, Murata Y, et al.. Preparation of chitosan microparticles by water-in-vegetableoil emulsion coalescence technique. Reactiveand Functional Polymers, 2005, 62(1): 77–83.
doi:10.1016/j.reactfunctpolym.2004.09.002
3 Li J, Zhang J J, Zhao X J, et al.. Preparation of porcine hemoglobin microcapsulesof chitosan-sodium alginate. Frontiersof Chemistry in China, 2007, 2(3): 315–317.
doi:10.1007/s11458-007-0058-9
4 Nunthanid J, Laungtana-anan M, Sriamornsak P, et al.. Characterization of chitosan acetate as a binderfor sustained release tablets. Journalof Controlled Release, 2004, 99(1): 15–26.
doi:10.1016/j.jconrel.2004.06.008
5 Mo X M, Chen Z G, Hans J W . Electrospun nanofibers of collagen-chitosan and P(LLA-CL)for tissue engineering. Frontiers of MaterialsScience in China, 2007, 1(1): 20–23.
doi:10.1007/s11706-007-0004-2
6 Wang L C, Chen X G, Yu L J, et al.. Controlled drug release through carboxymethyl-chitosan/poly(vinylalcohol) blend films. Polymer Engineeringand Science, 2007, 47(9): 1373–1379.
doi:10.1002/pen.20823
7 Guo T Y, Xia Y Q, Hao G J, et al.. Adsorptive separation of hemoglobin by molecularlyimprinted chitosan beads. Biomaterials, 2004, 25(27): 5905–5912.
doi:10.1016/j.biomaterials.2004.01.032
8 Barreiro-Iglesias R, Coronilla R, Concheiro A, et al.. Preparation of chitosan beads by simultaneouscross-linking/insolubilisation in basic pH rheological optimisationand drug loading/release behaviour. EuropeanJournal of Pharmaceutical Sciences, 2005, 24(1): 77–84.
doi:10.1016/j.ejps.2004.09.013
9 Mi F L, Tan Y C, Liang H C, et al.. In vitro evaluationof a chitosan membrane cross-linked with genipin. Journal of Biomaterials Science, Polymer Edition, 2001, 12(8): 835–850.
doi:10.1163/156856201753113051
10 Blanco M D, Gómez C, Olmo R, et al.. Chitosan microspheres in PLG films as devicesfor cytarabine release. International Journalof Pharmaceutics, 2000, 202(1–2): 29–39.
doi:10.1016/S0378-5173(00)00408-7
11 Shu X Z, Zhu K J . Chitosan/gelatin microspheresprepared by modified emulsification and ionotropic gelation. Journal of Microencapsulation, 2001, 18(2): 237–245.
doi:10.1080/02652040010000415
12 Zhou H Y, Chen X G, Liu C S, et al.. Chitosan/cellulose acetate microspheres preparationand ranitidine release in vitro. Pharmaceutical Development and Technology, 2005, 10(2): 219–225.
doi:10.1081/PDT-200054421
13 Makhija S N, Vavia P R . Controlled porosity osmoticpump-based controlled release systems of pseudoephedrine I. Celluloseacetate as a semipermeable membrane. Journalof Controlled Release, 2003, 89(1): 5–18.
doi:10.1016/S0168-3659(02)00482-0
14 Lu E X, Jiang Z Q, Zhang Q Z, et al.. A water-insoluble drug monolithic osmotic tabletsystem utilizing gum arabic as an osmotic, suspending and expandingagent. Journal of Controlled Release, 2003, 92(3): 375–382.
doi:10.1016/S0168-3659(03)00371-7
15 Santus G, Baker R W . Osmotic drug delivery: areview of the patent literature. Journalof Controlled Release, 1995, 35(1): 1–21.
doi:10.1016/0168-3659(95)00013-X
16 Shigemasa Y, Matsuura H, Sashiwa H, et al.. Evaluation of different absorbance ratios frominfrared spectroscopy for analyzing the degree of deacetylation inchitin. International Journal of BiologicalMacromolecules, 1996, 18(3): 237–242.
doi:10.1016/0141-8130(95)01079-3
17 El-Gibaly I . Developmentand in vitro evaluation of novelfloating chitosan microcapsules for oral use: comparison with non-floatingchitosan microspheres. International Journalof Pharmaceutics, 2002, 249(1–2): 7–21.
doi:10.1016/S0378-5173(02)00396-4
18 Bayomi M A, Al-Suwayeh S A, El-Helw A M, et al.. Preparation of casein-chitosan microspherescontaining diltiazem hydrochloride by an aqueous coacervation technique. Pharmaceutica Acta Helvetiae, 1998, 73(4): 187–192.
doi:10.1016/S0031-6865(98)00020-X
19 Chapman S R, Rowe R C, Newton J M . Characterization of the sphericity of particles by theone plane critical stability. Journal ofPharmacy and Pharmacology, 1988, 40(7): 503–505
20 Gupta K C, Ravi Kumar M N V . Drug release behavior ofbeads and microgranules of chitosan. Biomaterials, 2000, 21(11): 1115–1119.
doi:10.1016/S0142-9612(99)00263-X
21 Lucke A, Fustella E, Teszmar J, et al.. The effect of poly(ethylene glycol)-poly(D,L-lacticacid) diblock copolymers on peptide acylation. Journal of Controlled Release, 2002, 80(1–3): 157–168.
doi:10.1016/S0168-3659(02)00020-2
22 Wu T M, Wu C Y . Biodegradable poly(lacticacid)/chitosan-modified montmorillonite nanocomposites: Preparationand characterization. Polymer Degradationand Stability, 2006, 91(9): 2198–2204.
doi:10.1016/j.polymdegradstab.2006.01.004
23 Freier T, Koh H S, Kazazian K, et al.. Controlling cell adhesion and degradation ofchitosan films by N-acetylation. Biomaterials, 2005, 26(29): 5872–5878.
doi:10.1016/j.biomaterials.2005.02.033
24 Brouwer J, Leeuwen-Herberts TV, Ruit M O V D . Determination of lysozyme in serum, urine,cerebrospinal fluid and feces by enzyme immunoassay. Clinica Chimica Acta, 1984, 142(1): 21–30.
doi:10.1016/0009-8981(84)90097-4
25 Porstmann B, Jung K, Schmechta H, et al.. Measurement of lysozyme in human body fluids:comparison of various enzyme immunoassay techniques and their diagnosticapplication. Clinical Biochemistry, 1989, 22(5): 349–355.
doi:10.1016/S0009-9120(89)80031-1
26 Brugnerotto J, Lizardi J, Goycoolea F M, et al.. An infrared investigation in relation with chitinand chitosan characterization. Polymer, 2001, 42(8): 3569–3580.
doi:10.1016/S0032-3861(00)00713-8
27 Al-Ahmed A, Mohammad F, Rahman M Z A . Composites of polyaniline and cellulose acetate: preparation,characterization, thermo-oxidative degradation and stability in termsof DC electrical conductivity retention. Synthetic Metals, 2004, 144(1): 29–49.
doi:10.1016/j.synthmet.2004.01.007
28 Agatonovic-Kustrin S, Rades T, Wu V, et al.. Determination of polymorphic forms of ranitidine–HClby DRIFTS and XRPD. Journal of Pharmaceuticaland Biomedical Analysis, 2001, 25(5–6): 741–750.
doi:10.1016/S0731-7085(01)00375-2
29 Nair R, Nyamweya N, Gönen S, et al.. Influence of various drugs on the glass transitiontemperature of poly(vinylpyrrolidone): a thermodynamic and spectroscopicinvestigation. International Journal ofPharmaceutics, 2001, 225(1–2): 83–96.
doi:10.1016/S0378-5173(01)00767-0
30 Selvaraj V, Alagar M, Hamerton I . Analytical detection and biological assay of antileukemicdrug using gold nanoparticles. ElectrochimicaActa, 2006, 52(3): 1152–1160.
doi:10.1016/j.electacta.2006.07.016
31 Lin W C, Yu D G, Yang M C . pH-Sensitive polyelectrolyte complex gel microspherescomposed of chitosan/sodium tripolyphosphate/dextran sulfate: swellingkinetics and drug delivery properties. Colloid Surface B: Biointerfaces, 2005, 44(2–3): 143–151.
doi:10.1016/j.colsurfb.2005.06.010
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed