Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci Chin    2009, Vol. 3 Issue (1) : 9-14    https://doi.org/10.1007/s11706-009-0001-8
Research article
Vacancies as a constitutive element for the design of nanocluster-strengthened ferritic steels
MILLER1(), FU1, M. KRCMAR2, HOELZER1, LIU1,3
1. Materials Science and Technology Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge; 2. Department of Physics, Grand Valley State University, Allendale; 3. Department of Materials Science and Engineering, University of Tennessee, Knoxville
 Download: PDF(538 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The existence of nanoclusters that are thermodynamically stable at elevated temperatures is truly intriguing because of its scientific implications and potential applications. Highly stable nanoclusters have been observed by atom probe tomography in iron-based alloys at temperatures close to 1400°C (0.92Tm) that appear to defy the stability constraints of artificially created nanostructured materials. The ~4-nm-diameter Ti-, Y- and O-enriched nanoclusters are identified in the new form of a highly defective material state with vacancies as the critical alloying component and with (Ti + Y):O ratio different from the stable TiO2 and Y2Ti2O7 oxides. Vacancies play an indispensable role in enhancing the oxygen solubility and increasing the oxygen binding energy in the presence of Ti and Y, resulting in the stabilization of coherent nanoclusters. Atom probe tomography characterizations and theoretical predictions indicate that vacancies can be exploited for the first time as a nanoscale constituent to design materials with far superior high temperature properties.

Keywords nanocluster      vacancy      ferritic alloy      nanoscale constituent      high temperature property     
Corresponding Author(s): MILLER,Email:millermk@ornl.gov   
Issue Date: 05 March 2009
 Cite this article:   
FU,M. KRCMAR,HOELZER, et al. Vacancies as a constitutive element for the design of nanocluster-strengthened ferritic steels[J]. Front Mater Sci Chin, 2009, 3(1): 9-14.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-009-0001-8
https://academic.hep.com.cn/foms/EN/Y2009/V3/I1/9
Fig0  The lift-out and annular milling procedure for the preparation of atom probe needle-shaped specimens from the ball milled powder with the use of a dual beam scanning electron microscope/focused ion beam miller
1 MillerM K. Atom Probe Tomography: Analysis at the Atomic Level. Kluwer Academic/Plenum Publishers , 2000
2 LarsonD J, MaziaszP J, KimI-S, . Three-dimensional atom probe observation of nanoscale titanium-oxygen clustering in an oxide-dispersion-strengthened Fe-12Cr-3W-0.4Ti + Y2O3 ferritic alloy. Scripta Materialia , 2001, 44(2): 359–364
doi: 10.1016/S1359-6462(00)00593-5
3 MillerM K, KenikE A, RussellK F, . Atom probe tomography of nanoscale particles in ODS ferritic alloys. Materials Science and Engineering: A , 2003, 353(1–2): 140–145
doi: 10.1016/S0921-5093(02)00680-9
4 MillerM K, HoelzerD T, KenikE A, . Nanometer scale precipitation in ferritic MA/ODS alloy MA957. Journal of Nuclear Materials , 2004, 329–333(Part 1): 338–341
doi: 10.1016/j.jnucmat.2004.04.085
5 MillerM K, HoelzerD T, KenikE A, . Stability of ferritic MA/ODS alloys at high temperatures. Intermetallics , 2005, 13(3–4): 387–392
doi: 10.1016/j.intermet.2004.07.036
6 MillerM K, RussellK F, HoelzerD T. Characterization of precipitates in MA/ODS ferritic alloys. Journal of Nuclear Materials , 2006, 351(1–3): 261–268
doi: 10.1016/j.jnucmat.2006.02.004
7 HoelzerD T, BentleyJ, SokolovM A, . Influence of particle dispersions on the high-temperature strength of ferritic alloys. Journal of Nuclear Materials , 2007, 367–370(Part 1): 166–172
doi: 10.1016/j.jnucmat.2007.03.151
8 PareigeP, MillerM K, StollerR E, . Stability of nanometer-sized oxide clusters in mechanically-alloyed steel under ion-induced displacement cascade damage conditions. Journal of Nuclear Materials , 2007, 360(2): 136–142
doi: 10.1016/j.jnucmat.2006.09.011
9 AllenT R, GanJ, ColeJ I, . Radiation response of a 9 chromium oxide dispersion strengthened steel to heavy ion irradiation. Journal of Nuclear Materials , 2008, 375(1): 26–37
doi: 10.1016/j.jnucmat.2007.11.001
10 MillerM K, SmithG D W. Atom Probe Microanalysis: Principles and Applications to Materials Problems (in Chinese, trans. Gong Y H, Sha W).Beijing: Peking University Press, 1993 (Original work published. Pittsburgh, PA: Materials Research Society, 1989)
11 FuC L, KrcmarM, PainterG S, . Vacancy mechanism of high oxygen solubility and nucleation of stable oxygen-enriched clusters in Fe. Physical Review Letters , 2007, 99: 225502
doi: 10.1103/PhysRevLett.99.225502
12 PerdewJ P, WangY. Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B , 1992, 45: 13244–13249
doi: 10.1103/PhysRevB.45.13244
13 VanderbiltD. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B , 1990, 41: 7892–7895
doi: 10.1103/PhysRevB.41.7892
14 KresseG, FurthmüllerJ. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science , 1996, 6(1): 15–50
doi: 10.1016/0927-0256(96)00008-0
[1] Lirong ZENG, Lan CUI, Caiyun WANG, Wei GUO, Cairong GONG. Ag-assisted CeO2 catalyst for soot oxidation[J]. Front. Mater. Sci., 2019, 13(3): 288-295.
[2] Chao WANG, Wu WANG, Ke HE, Shantang LIU. Pr-doped In2O3 nanocubes induce oxygen vacancies for enhancing triethylamine gas-sensing performance[J]. Front. Mater. Sci., 2019, 13(2): 174-185.
[3] FANG Qianfeng, WANG Xianping, CHENG Zhijun, ZHANG Guoguang. Research status of novel La2Mo2O9-based oxide-ion conductors[J]. Front. Mater. Sci., 2007, 1(1): 7-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed