Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci Chin    2009, Vol. 3 Issue (1) : 84-88    https://doi.org/10.1007/s11706-009-0006-3
RESEARCH ARTICLE
Numerical simulation on bucking distortion of aluminum alloy thin-plate weldment
Jun LI(), Jian-guo YANG, Hai-long LI, De-jun YAN, Hong-yuan FANG
State Key Laboratory of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin 150001, China
 Download: PDF(194 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, the welding residual distortion of aluminum alloy thin plates is predicted using the elasticity-plasticity finite element method (FEM). The factors contributing to the welding buckling distortion of thin plates are studied by investigating the formation and evolution process of welding stresses. Results of experiments and numerical simulations show that the buckling appearance of thin-plate aluminum alloy weldments is asymmetrical in the welding length direction, and the maximum longitudinal deflection appears at the position a certain distance from the middle point of the side edge towards the arc-startingexists end. The angular deformation direction of thin-plate weldments is not fixed, and the angular deformation value of the arc-starting end is being higher than that of the arc-blowout end.

Keywords aluminum alloy      thin plate      welding      buckling distortion      numerical simulation     
Corresponding Author(s): LI Jun,Email:lijun20066002@sina.com.cn   
Issue Date: 05 March 2009
 Cite this article:   
Jun LI,Jian-guo YANG,Hai-long LI, et al. Numerical simulation on bucking distortion of aluminum alloy thin-plate weldment[J]. Front Mater Sci Chin, 2009, 3(1): 84-88.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-009-0006-3
https://academic.hep.com.cn/foms/EN/Y2009/V3/I1/84
Fig.1  Finite element model of workpiece
Fig.2  Temperature dependency of yield strength and Young’s modulus in case of 2A12T4 aluminum alloy
Fig.3  Specific heat, thermal conductivity and thermal expansion coefficient temperature dependency in case of 2A12T4 aluminum alloy
CurrentI /AVoltageU /VHeat efficiencyWelding speedv /(mm·s-1)
120120.54.75
Tab.1  Parameters of welding
Fig.4  Modeling of welding clamp
Fig.5  Simulation result of residual distortion
Fig.6  Simulation results of deflection of longitudinal sections different distances from the welding line
Fig.7  Actual welded piece
Fig.8  Measurement results of deflection of longitudinal sections different distance from the welding line
Fig.9  Change of longitudinal stresses at nodes A, B, C and D with time
Fig.10  Distribution of longitudinal residual stresses along the welding line
1 Zhang J Q, Zhang G D, Zhao H Y, . 3D-FEM numerical simulation of welding stress in thin aluminum alloy plate. Transactions of the China Welding Institution , 2007, 28(6): 5-9 (in Chinese)
2 Li Y J, Wang J. Welding and Application of Nonferrous Metal. Beijing: Chemical Industry Press, 2006, 29-30 (in Chinese)
3 Guan Q, Zhang C X, Guo D L. New technique for dynamically controlled low stress non-distortion welding. Transactions of the China Welding Institution , 1994, 15(1): 8-15 (in Chinese)
4 Guan Q. Efforts to eliminate welding buckling distortions - from passive measures to active in-process control. In: Proceeding of the 7th International Symposium of JWS: Today and Tomorrow in Science and Technology of Welding and Joining. Kobe, Japan , 2001
5 Fang H Y. Knowledge of Welded Construction. Beijing: China Machine Press, 2008, 94-95 (in Chinese)
6 Tian X T. Welded Construction. Beijing: China Machine Press, 1982, 29-32 (in Chinese)
[1] Wei WU, Fen ZHANG, Yu-Chao LI, Yong-Feng ZHOU, Qing-Song YAO, Liang SONG, Rong-Chang ZENG, Sie Chin TJONG, Dong-Chu CHEN. Corrosion resistance of a silane/ceria modified Mg--Al-layered double hydroxide on AA5005 aluminum alloy[J]. Front. Mater. Sci., 2019, 13(4): 420-430.
[2] M. SCHNICK, U. FUESSEL, M. HERTEL, A. SPILLE-KOHOFF, A. B. MURPHY. Numerical investigations of arc behaviour in gas metal arc welding using ANSYS CFX[J]. Front Mater Sci, 2011, 5(2): 98-108.
[3] Yan-Hong WEI, Xiao-Hong ZHAN, Zhi-Bo DONG. Development and application of software packages in welding engineering[J]. Front Mater Sci, 2011, 5(2): 160-167.
[4] Shao-Qing GUO, Xiao-Hong LI. Numerical simulation of solidification and liquation behavior during welding of low-expansion superalloys[J]. Front Mater Sci, 2011, 5(2): 146-159.
[5] V. PLOSHIKHIN, A. PRIHODOVSKY, A. ILIN. Experimental investigation of the hot cracking mechanism in welds on the microscopic scale[J]. Front Mater Sci, 2011, 5(2): 135-145.
[6] Ji CHEN, Chuan-Song WU. Numerical simulation of humping phenomenon in high speed gas metal arc welding[J]. Front Mater Sci, 2011, 5(2): 90-97.
[7] San-Bao LIN, Yan-Hua ZHAO, Zi-Qiu HE, Lin WU. Modeling of friction stir welding process for tools design[J]. Front Mater Sci, 2011, 5(2): 236-245.
[8] Dieter SIEGELE. Welding mechanics for advanced component safety assessment[J]. Front Mater Sci, 2011, 5(2): 224-235.
[9] Jing-Qing CHEN, Hao LU, Wei CUI. Study on Ductility Dip Cracking susceptibility in Filler Metal 82 during welding[J]. Front Mater Sci, 2011, 5(2): 203-208.
[10] V. A. KARKHIN, A. PITTNER, C. SCHWENK, M. RETHMEIER. Simulation of inverse heat conduction problems in fusion welding with extended analytical heat source models[J]. Front Mater Sci, 2011, 5(2): 119-125.
[11] Rui-Hua ZHANG, Ji-Luan PAN, Seiji KATAYAMA. The mechanism of penetration increase in A-TIG welding[J]. Front Mater Sci, 2011, 5(2): 109-118.
[12] M. URNER, K. DILGER. Welding simulation of complex structures – possibilities and limits[J]. Front Mater Sci, 2011, 5(2): 196-202.
[13] Vesselin MICHAILOV, Nikolay DOYNOV, Christoph STAPELFELD, Ralf OSSENBRINK. Hybrid model for prediction of welding distortions in large structures[J]. Front Mater Sci, 2011, 5(2): 209-215.
[14] Hong-Yuan FANG, Tao WANG, Jun-Feng HU, Jian-Guo YANG. Node dynamic relaxation method: principle and application[J]. Front Mater Sci, 2011, 5(2): 179-195.
[15] C. HEINZE, C. SCHWENK, M. RETHMEIER, J. CARON. Numerical sensitivity analysis of welding-induced residual stress depending on variations in continuous cooling transformation behavior[J]. Front Mater Sci, 2011, 5(2): 168-178.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed