Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci Chin    2009, Vol. 3 Issue (3) : 266-272    https://doi.org/10.1007/s11706-009-0040-1
RESEARCH ARTICLE
Interfacial friction damping characteristics in MWNT-filled polycarbonate composites
Yu-hong MAN, Zheng-cao LI, Zheng-jun ZHANG()
Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
 Download: PDF(192 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The effects of strain, temperature, test frequency, and multi-walled nanotube (MWNT) weight percentage on the interfacial sliding at the tube-polymer interfaces were investigated by dynamic mechanical tests. The storage modulus first increased slightly then reached a plateau and finally decreased sharply with further increasing strain (temperature, frequency) amplitude. Moreover, the changing of the storage modulus of the nanocomposite lagged the loss modulus as a function of strain (temperature, frequency). Furthermore, with the increase of MWNT weight percentage interfacial slip was activated at relative smaller strain, lower temperature, or lower frequency. The possible influence of polymer wrapping carbon nanotubes in the interfacial area on interfacial friction was introduced.

Keywords carbon nanotube      polycarbonate      damping      interfacial friction     
Corresponding Author(s): ZHANG Zheng-jun,Email:zjzhang@tsinghua.edu.cn   
Issue Date: 05 September 2009
 Cite this article:   
Zheng-cao LI,Zheng-jun ZHANG,Yu-hong MAN. Interfacial friction damping characteristics in MWNT-filled polycarbonate composites[J]. Front Mater Sci Chin, 2009, 3(3): 266-272.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-009-0040-1
https://academic.hep.com.cn/foms/EN/Y2009/V3/I3/266
Fig.1  Representative SEM image of the fracture surface of 6 wt.% MWCNT-polycarbonate composite. The insert of the enlarged image showing uniform distribution of nanotubes on the fracture surface. TEM image of 4 wt.% MWCNT-polycarbonate composite.
Fig.2  Storage modulus as a function of strain for nanocomposites and the pure polycarbonate. Loss modulus as a function of strain for nanocomposites and the pure polycarbonate. All the tests were performed at room temperature and the test frequency was constant at 1 Hz.
Fig.3  Plot of and , and , and and as a function of nanotube concentration. The entire parameters have been defined in the text.
Fig.4  Storage modulus of the nanocomposite and pure polycarbonate as a function of temperature. Loss modulus of the nanocomposite and pure polycarbonate as a function of temperature. The test strain is constant at 0.1% and the test frequency is constant at 1 Hz.
Fig.5  Plot of the storage and loss modulus as a function of the test frequency for nanotube weight ratio of 0.1%, 0.5%, 2%, and 4%. All the tests were performed at room temperature and the test strain was constant at 0.1%.
1 H?lscher H, Schwarz U D, Zw?rner O, . Consequences of the stick-slip movement for the scanning force microscopy imaging of graphite. Physical Review B , 1998, 57: 2477-2481
doi: 10.1103/PhysRevB.57.2477
2 Koratkar N, Suhr J, Joshi A, . Charactering energy dissipation in single-walled carbon nanotubes polycarbonate composites. Applied Physics Letters , 2005, 87(6): 063102 (3 pages)
3 Zhou X, Shin E, Wang K W, . Interfacial damping characteristics of carbon nanotube-based composites. Composites Science and Technology , 2004, 64: 2425
doi: 10.1016/j.compscitech.2004.06.001
4 Buldum A, Lu J P. Atomic scale sliding and rolling of carbon nanotubes. Physical Review Letters , 1999, 83: 5050-5053
doi: 10.1103/PhysRevLett.83.5050
5 Wagner H D, Lourie O, Feldman Y, . Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix. Applied Physics Letters , 1998, 72(2): 188-190
doi: 10.1063/1.120680
6 Rajoria H, Jalili N. Passive vibration damping enhancement using carbon nanotube-epoxy reinforced composites. Composites Science and Technology , 2005, 65(14): 2079-2093
doi: 10.1016/j.compscitech.2005.05.015
7 Suhr J, Zhang W, Ajayan P M, . Temperature-activated interfacial friction damping in carbon nanotube polymer composites. Nano Letters , 2006, 6(2): 219-223
doi: 10.1021/nl0521524
8 Suhr J, Koratkar N, Keblinski P, . Viscoelasiticity in carbon nanotube composites. Nature Materials , 2005, 4: 134-137
doi: 10.1038/nmat1293
9 Wagner H D, Vaia R A. Nanocomposites: issues at the interface. Materials Today , 2004, 7(11): 38-42
doi: 10.1016/S1369-7021(04)00507-3
10 Treacy M M, Ebbesen T W, Gibson J M. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature , 1996, 381(6854): 678-680
doi: 10.1038/381678a0
11 Singh S, Pei Y, Miller R, . Long-range, entangled carbon nanotube networks in polycarbonate. Advanced Functional Materials , 2003, 13: 868-872
doi: 10.1002/adfm.200304411
12 Ajayan P M, Schadler L S, Giannaris C, . Single-walled carbon nanotube-polymer composites: strength and weakness. Advanced Materials , 2000, 12(10): 750-754
doi: 10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO;2-6
13 Qian D, Dickey C, Andrews R, . Load transfer and deformation mechanisms in carbon nanotube-polystyrene composite. Applied Physics Letters , 2000, 76(20): 2868-2870
doi: 10.1063/1.126500
14 Sandler J, Shaffer M S P, Prasse T, . Development of a dispersion process for carbon nanotube in an epoxy matrix and the resulting electrical properties. Polymer , 1999, 40(21): 5967-5971
doi: 10.1016/S0032-3861(99)00166-4
15 Schadler L S, Giannaris S C, Ajayan P M. Load transfer in carbon nanotube epoxy composites. Applied Physics Letters , 1998, 73(26): 3842-3844
doi: 10.1063/1.122911
16 Thostenson E T, Ren Z F, Chou T W. Advances in the science and technology of carbon nanotubes and their composites: a review. Composites Science and Technology , 2001, 61(13): 1899-1912
doi: 10.1016/S0266-3538(01)00094-X
17 Zhang W, Suhr J, Koratkar N A. Observation of high buckling stability in carbon nanotube polymer composites. Advanced Materials , 2006, 18: 452-456
doi: 10.1002/adma.200501777
18 Eitan A, Fisher F T, Andrews R, . Reinforcement mechanisms in MWNT-filled polycarbonate. Composites Science and Technology , 2006, 66(9): 1162-1173
doi: 10.1016/j.compscitech.2005.10.004
[1] Yun ZHAO, Linan YANG, Canliang MA. One-step gas-phase construction of carbon-coated Fe3O4 nanoparticle/carbon nanotube composite with enhanced electrochemical energy storage[J]. Front. Mater. Sci., 2020, 14(2): 145-154.
[2] Jun ZHAO, Hang ZHAN, Hai Tao CHEN, Jian Nong WANG. Preparation and thermal properties of layered porous carbon nanotube/epoxy resin composite films[J]. Front. Mater. Sci., 2019, 13(4): 382-388.
[3] Chengzhi LUO, Guanghui LIU, Min ZHANG. Electric-field-induced microstructure modulation of carbon nanotubes for high-performance supercapacitors[J]. Front. Mater. Sci., 2019, 13(3): 270-276.
[4] Heng CHEN, Yun CHEN, Hang ZHAN, Guang WU, Jian Ming XU, Jian Nong WANG. Preparation of carbon nanotube/epoxy composite films with high tensile strength and electrical conductivity by impregnation under pressure[J]. Front. Mater. Sci., 2019, 13(2): 165-173.
[5] Somdutta SINGHA, Swapankumar GHOSH. Spectroscopic investigation confirms retaining the pristine nature of single-walled carbon nanotubes on dissolution in aniline[J]. Front. Mater. Sci., 2017, 11(3): 276-283.
[6] Xian-Ping WANG,Yi ZHANG,Yu XIA,Wei-Bing JIANG,Hui LIU,Wang LIU,Yun-Xia GAO,Tao ZHANG,Qian-Feng FANG. Enhanced micro-vibration sensitive high-damping capacity and mechanical strength achieved in Al matrix composites reinforced with garnet-like lithium electrolyte[J]. Front. Mater. Sci., 2017, 11(1): 75-81.
[7] Ke ZHU, Yuan-Yuan SHANG, Peng-Zhan SUN, Zhen LI, Xin-Ming LI, Jin-Quan WEI, Kun-Lin WANG, De-Hai WU, An-Yuan CAO, Hong-Wei ZHU. Oil spill cleanup from sea water by carbon nanotube sponges[J]. Front Mater Sci, 2013, 7(2): 170-176.
[8] Xiao-Na WANG, Ping-An HU. Carbon nanomaterials: controlled growth and field-effect transistor biosensors[J]. Front Mater Sci, 2012, 6(1): 26-46.
[9] Jie MA, Jian-Nong WANG, Chung-Jung TSAI, Buyong MA, Ruth NUSSINOV, . Diameters of single-walled CNTs (SWCNTs) and related nanochemistry and nanobiology[J]. Front. Mater. Sci., 2010, 4(1): 17-28.
[10] F. WATARI, T. AKASAKA, Xiaoming LI, M. UO, A. YOKOYAMA. Proliferation of osteoblast cells on nanotubes[J]. Front Mater Sci Chin, 2009, 3(2): 169-173.
[11] Xue-tong ZHANG, Wen-hui SONG. Electrochemical preparation and electrochemical behavior of polypyrrole/carbon nanotube composite films[J]. Front Mater Sci Chin, 2009, 3(2): 194-200.
[12] ZHANG Jin-chao, JI Xiao-yu, LIU Cui-lian, SHEN Shi-gang, WANG Shu-xiang, SUN Jing. Effect of single-walled carbon nanotubes on primary immune cells [J]. Front. Mater. Sci., 2008, 2(2): 228-232.
[13] SHI Ya, LI Zheng-cao, MIAO Wei, WANG Yu-quan, ZHANG Zheng-jun, XU Chun-hua. Magnetic and optical properties of polycarbonate/Fe nanocomposites[J]. Front. Mater. Sci., 2008, 2(1): 16-19.
[14] ZHANG Chun-mei, FU Ya-bo, CHEN Qiang, ZHANG Yue-fei. Effects of oxygen on multiwall carbon nanotubes growth by PECVD[J]. Front. Mater. Sci., 2008, 2(1): 37-41.
[15] JIANG Qi, QIAN Lan, YI Jing, ZHU Xiaotong, ZHAO Yong. Effects of boron-doping on the morphology and magnetic property of carbon nanotubes[J]. Front. Mater. Sci., 2007, 1(4): 379-382.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed