Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci Chin    2009, Vol. 3 Issue (3) : 306-309    https://doi.org/10.1007/s11706-009-0042-z
COMMUNICATION
Numerical simulation of weld tab length influence on welding residual stress and distortion of aero-engine disk
Xue-qiu ZHANG1(), Jian-guo YANG1,2, Xue-song LIU1, Xu-hui CHEN1, Hong-yuan FANG1, Shen QU2
1. State Key Laboratory of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin 150001, China; 2. Shenyang Liming Aero-Engine Group Corporation, Shenyang 110043, China
 Download: PDF(251 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In order to control the welding residual stress and distortion to the greatest extent, based on the MSC.MARC software platform and adopting the impending critical value methods gradually, the welding residual stress and distortion are calculated through varying the weld tab length values. The results show that different weld tab lengths only have a slight effect on welding residual stress but a significant effect on welding distortion. According to the calculation results with different weld tab lengths, the critical length value for the 100 mm-length TC4 alloy weld for electron beam welding of an integral disk should be 50 mm or so.

Keywords weld tabs      temperature field      residual stress      distortion     
Corresponding Author(s): ZHANG Xue-qiu,Email:jackeee90@163.com   
Issue Date: 05 September 2009
 Cite this article:   
Xue-qiu ZHANG,Jian-guo YANG,Xue-song LIU, et al. Numerical simulation of weld tab length influence on welding residual stress and distortion of aero-engine disk[J]. Front Mater Sci Chin, 2009, 3(3): 306-309.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-009-0042-z
https://academic.hep.com.cn/foms/EN/Y2009/V3/I3/306
Fig.1  Finite element model of two blades
Fig.2  Finite element model of weld tab
Fig.3  Temperature dependency of mechanical properties
Fig.4  Temperature dependency of thermal physical properties
Fig.5  Welding distortion of disk with 10, 50, and 100 mm weld tab lengths
Fig.6  Welding distortion of disk with 25, 50, and 75 mm weld tab length
Fig.7  Welding residual of disk with different weld tab lengths (0-0.05 m)
Fig.8  Welding residual of disk with different weld tab lengths (0.05-0.1 m)
1 Prasad R K, Angamuthu K, Bala S P. Fracture toughness of electron beam welded Ti6Al4V. Journal of Materials Processing Technology , 2008,199(1-3): 185–192
2 Balasubramanian M, Jayabalan V, Balasubramanian V. Effect of pulsed gas tungsten arc welding on corrosion behavior of Ti-6Al-4V titanium alloy. Materials & Design , 2008, 29(7): 1359–1363
3 Oshida Y. Bioscience and bioengineering of titanium materials. London: Elsevier Ltd , 2007, 381–418
doi: 10.1016/B978-008045142-8/50012-8
4 Kumar V C. Process parameters influencing melt profile and hardness of pulsed laser treated Ti-6Al-4V. Surface and Coatings Technology , 2006, 201(6): 3174– 3180
doi: 10.1016/j.surfcoat.2006.06.035
5 Saresh N, Pillai M G, Mathew J. Investigations into the effects of electron beam welding on thick Ti-6Al-4V titanium alloy. Journal of Materials Processing Technology, 2007, 192-193: 83–88
doi: 10.1016/j.jmatprotec.2007.04.048
6 Boyer R R. An overview on the use of titanium in the aerospace industry. Materials Science and Engineering: A , 1996, 213: 103–114
doi: 10.1016/0921-5093(96)10233-1
7 Dey V, Pratihar D K, Datta G L. Optimization of bead geometry in electron beam welding using a Genetic Algorithm. Journal of Materials Processing Technology , 2009, 209(3): 1151–1157
doi: 10.1016/j.jmatprotec.2008.03.019
8 Mohandas T, Banerjee D, Kutumba Rao V V. Observations on impact toughness of electron beam welds of an α+β titanium alloy. Materials Science and Engineering: A , 1998, 254(1-2): 147–154
doi: 10.1016/S0921-5093(98)00697-2
9 Pavelic V, Tanbakuchi R, Auyehara O. Experimental and computed temperature histories in gas tungsten arc welding of thin plates. Welding Journal Research Supplement , 1969, 48(7): 295–305
10 Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources. Metallurgical and Materials Transactions B , 1984, 15: 299–305
[1] Dieter SIEGELE. Welding mechanics for advanced component safety assessment[J]. Front Mater Sci, 2011, 5(2): 224-235.
[2] M. URNER, K. DILGER. Welding simulation of complex structures – possibilities and limits[J]. Front Mater Sci, 2011, 5(2): 196-202.
[3] Vesselin MICHAILOV, Nikolay DOYNOV, Christoph STAPELFELD, Ralf OSSENBRINK. Hybrid model for prediction of welding distortions in large structures[J]. Front Mater Sci, 2011, 5(2): 209-215.
[4] C. HEINZE, C. SCHWENK, M. RETHMEIER, J. CARON. Numerical sensitivity analysis of welding-induced residual stress depending on variations in continuous cooling transformation behavior[J]. Front Mater Sci, 2011, 5(2): 168-178.
[5] De-An DENG, . Theoretical prediction of welding distortion in large and complex structures[J]. Front. Mater. Sci., 2010, 4(2): 202-209.
[6] Hui LI, Jian-song SHI, Rong-rong ZONG, Xiao-xia WANG, . Application of contact element method in the numerical simulation of thermal stress[J]. Front. Mater. Sci., 2009, 3(4): 421-425.
[7] Jun LI, Jian-guo YANG, Hai-long LI, De-jun YAN, Hong-yuan FANG. Numerical simulation on bucking distortion of aluminum alloy thin-plate weldment[J]. Front Mater Sci Chin, 2009, 3(1): 84-88.
[8] Hong-yuan FANG, Xue-qiu ZHANG, Jian-guo YANG, Xue-song LIU, Shen QU. Discussion and calculation on welding residual longitudinal stress and plastic strain by finite element method[J]. Front Mater Sci Chin, 2009, 3(1): 75-77.
[9] De-jun YAN, Xue-song LIU, Huan-yu XU, Jian-guo YANG, Hong-yuan FANG, Jing-yang LU. Welding distortion control of automobile engine stator by finite element method[J]. Front Mater Sci Chin, 2009, 3(1): 71-74.
[10] ZHAO Hai-yan, WANG Xin, WANG Xi-chang, LEI Yong-ping. Reduction of residual stress and deformation in electron beam welding by using multiple beam technique[J]. Front. Mater. Sci., 2008, 2(1): 66-71.
[11] LI Huiping, ZHAO Guoqun, HE Lianfang. Research on key technologies of FEM simulation of temperature field in the process of quenching[J]. Front. Mater. Sci., 2007, 1(4): 359-365.
[12] GUAN Jianjun, CHEN Huaining. Numerical analysis of welded joint treated by explosion shock waves[J]. Front. Mater. Sci., 2007, 1(2): 197-202.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed