Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci Chin    2009, Vol. 3 Issue (3) : 333-338    https://doi.org/10.1007/s11706-009-0051-y
RESEARCH ARTICLE
Adhesion behavior of plasma sprayed thermal barrier coatings on Al-6061 and cast iron substrates
N. KRISHNAMURTHY1(), S. C. SHARMA2, M. S. MURALI2, P. G. MUKUNDA1
1. Mechanical Engineering Department, Nitte Meenakshi Institute of Technology, Bangalore 560064, Karnataka, India; 2. Mechanical Engineering Department, RV College of Engineering, Bangalore, Karnataka, India
 Download: PDF(242 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this work an investigation was carried out on adhesion strength and micro-hardness of plasma sprayed coatings on Al-6061 and cast iron substrate materials. For the adhesion test, ASTM C633, and for the micro hardness, ASTM E384 standards were used. From the results obtained it was found that the main failure locations were in the bond coat-substrate interface, which is considered as adhesion strength. The various parameters affecting adhesion strength are also discussed.

Keywords adhesion strength      micro-hardness plasma spraying      thermal barrier coating     
Corresponding Author(s): KRISHNAMURTHY N.,Email:krishamu@rediffmail.com   
Issue Date: 05 September 2009
 Cite this article:   
N. KRISHNAMURTHY,S. C. SHARMA,M. S. MURALI, et al. Adhesion behavior of plasma sprayed thermal barrier coatings on Al-6061 and cast iron substrates[J]. Front Mater Sci Chin, 2009, 3(3): 333-338.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-009-0051-y
https://academic.hep.com.cn/foms/EN/Y2009/V3/I3/333
Fig.1  Types of failure in the tensile adhesion test ASTM-C-633
substrate material
Al-6061cast iron
Si-0.65, Fe-0.25, Cu-0.25, Mn-0.3, Mg-0.89,Zn-0.1, Cr-0.07, V-0.01, Ti-0.82, Al-balanceFe-3.54, C-2.21, Si-0.67, Mn-0.25,Cr-0.013, Cu-0.56, P-0.031
coating material
Metco105SFP (TC1)a)Metco 201NS (TC2)b)Metco 446 (BC1)c)Metco 452 (BC2)d)Metco 410NS (BC3)e)
99.5Al2O3ZrO2·5CaOAl·25Fe·7Cr·5NiFe·38Ni·10AlAl2O3·30(Ni·20Al)
Tab.1  Chemical composition of substrate and coating materials
Fig.2  Dimensions of uncoated specimen
sample (Al6061 and cast iron substrate)123456
TC1100300400
TC2100300400
BC1505050100100100
BC3 common for Al-6061 & CI substrate505050
BC2 for CI substrate only505050100100100
Tab.2  Coating thickness of different layers (μm)
materialprimary gas (argon) pressure /kPasecondary gas (H2) pressure /kPacarrier gas (N2) flow /(L·min-1)current /Avoltage /Vspray distance /mmfeed rate /(kg·h-1)
TC1700520606006564-1252.7
TC2345345375007550-1005.4
BC15203403750070100-1503.2
BC27003403750065100-1754.1
BC3700350375006575-1252.3
Tab.3  Plasma spray parameters for different coating materials used
Fig.3  Schematic diagrams of coating layers with Al-6061 substrate
Fig.4  Coated specimens with Al-6061and CI substrate
samplealuminum substratecast iron substrate
123456123456
adhesion strength /MPa9.686.115.5211.810.37.4712.5616.828.735.938.8744.2
Hardness, HV031050-10701000-10501020-1060950-1000900-930880-9001040-10601020-10501000-1030930-1000920-960900-940
Tab.4  Adhesion and hardness values for different coating systems
Fig.5  Fractured specimens with Al-6061 substrate: Samples 1; Sample 2; Sample 3; Sample 4; Sample 5; Sample 6
Fig.6  Fractured specimens with cast iron substrate: Samples 1; Sample 2; Sample 3; Sample 4; Sample 5; Sample 6
Fig.7  Diagram of strength versus strain for Samples 1, 2, 3 and Samples 4, 5, 6 with Al-6061 substrate
Fig.8  Diagram of strength versus strain for Samples 1, 2, 3 and Samples 4, 5, 6 with cast iron substrate
1 AWS. Thermal Spraying: Practice, Theory and Application. Miami, FL: American Welding Society , 1985
2 Sobolev V V, Guilemany J M, Nutting J, . Development of substrate-coating adhesion in thermal spraying. International Materials Reviews , 1997, 42(3): 117-136
3 Houben J M. Relationship between the adhesion of plasma sprayed coatings to the process parameters size, velocity and heat content of the spray particles. Dissertation for the Doctoral Degree . The Netherlands: Eindhoven University of Technology Eindhoven, 1988
4 Harmsworth P D, Stevens R. Microstructure of zirconia-yttria plasma-sprayed thermal barrier coatings. Journal of Materials Science , 1992, 27: 616-624
doi: 10.1007/BF02403869
5 Bartuli C, Bertamini L, Matera S, . Investigation of the formation of an amorphous film at the ZrO2-Y2O3/NiCoCrAlY interface of thermal barrier coatings produced by plasma spraying. Materials Science and Engineering: A , 1995, 199: 229-237
doi: 10.1016/0921-5093(94)09697-X
6 Bahbou M F, Nylén P, Wigren J. Effect of grit blasting and spraying angle on the adhesion strength of a plasma-sprayed coating. Journal of Thermal Spray Technology , 2004, 13(4): 508-514
doi: 10.1361/10599630421406
7 Berndt C C. Cracking progresses in thermally sprayed ceramic coatings. Materials Science Forum , 1988, 34-36: 457-461
8 Era H, Otsubo F, Uchida T, . A modified shear test for adhesion evaluation of thermal sprayed coating. Materials Science and Engineering: A , 1998, 251(1-2): 166-172
doi: 10.1016/S0921-5093(98)00631-5
9 Zhu Y L, Ma S N, Xu B S. Finite-element evaluation and improvement of a test procedure for coating shear bond strength determination. Journal of Thermal Spray Technology , 1999, 8(2): 328-332
doi: 10.1361/105996399770350557
10 Siegman S, Dvorak M, Grutzner H, . In: Lugscheider E, ed. Thermal Spray Connects: Explore its Surface Potential, Proceedings of the International Thermal Spray Conference ITSC, Basel, Switzerland, ASM International/DVS, Dusseldorf, Germany , 2005, 823
11 Hadad M, Marot G, Lesage J, . In: Lugscheider E, ed. Thermal Spray Connects: Explore its Surface Potential, Proceedings of the International Thermal Spray Conference ITSC, Basel, Switzerland, ASM International/DVS, Dusseldorf, Germany , 2005, 759
12 Trevisan R E, Fals H C, Lima C R C. Critical evaluation of adhesion tests in plasma sprayed metal-ceramic coatings. CIT Information Tecnologica (Chile) , 2000, 11(4): 103–112
13 ASTM. Standard test method for adhesion and cohesion strength of thermal spray coating. ASTM standard C-633-01. West Conshocken, PA , USA: ASTM International, 2001
14 Janos B Z, Lugscheider E, Remer P. Effect of thermal aging on the erosion resistance of air plasma sprayed zirconia thermal barrier coatings. Surface and Coatings Technology , 1999, 113: 278-285
doi: 10.1016/S0257-8972(99)00002-X
15 Haynes J A, Ferber M K, Porter W D, . Mechanical properties and fracture behavior of interfacial alumina scales on plasma-sprayed thermal barrier coatings. Materials at High Temperatures , 1999, 16(2): 49-69
doi: 10.3184/096034099783641191
16 Lima C R C, Guilemany J M. Adhesion improvements of thermal barrier coatings with HVOF thermally sprayed bond coats. Surface and Coatings Technology , 2007, 201(8): 4694-4701
doi: 10.1016/j.surfcoat.2006.10.005
17 Limarga A M, Widjaja S, Yip T H. Mechanical properties and oxidation resistance of plasma-sprayed multilayered Al2O3/ZrO2 thermal barrier coatings. Surface and Coatings Technology , 2005, 197: 93-102
doi: 10.1016/j.surfcoat.2005.02.087
18 ASTM. Standard test method for micro indentation hardness of materials. ASTM E384. West Conshocken, PA , USA: ASTM International, 2005
[1] Dong-Bo ZHANG,Bin-Yi WANG,Jian CAO,Guan-Yu SONG,Juan-Bo LIU. Investigation on the thermo-chemical reaction mechanism between yttria-stabilized zirconia (YSZ) and calcium--magnesium--alumino-silicate (CMAS)[J]. Front. Mater. Sci., 2015, 9(1): 93-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed