Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2009, Vol. 3 Issue (4) : 403-408    https://doi.org/10.1007/s11706-009-0055-7
Research articles
Nanostructured TiO 2 photocatalyst and pump-probe spectroscopic study
Wen-can ZHOU1,Zheng-cao LI1,Zheng-jun ZHANG1,Ken ONDA2,Sho OGIHARA2,Yoichi OKIMOTO2,Shin-ya KOSHIHARA2,
1.Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; 2.Department of Materials Science, Tokyo Institute of Technology, Tokyo, Japan;
 Download: PDF(337 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Titanium dioxide (TiO2), with its large band gap, has attracted much attention due to its excellent photocatalytic activity. TiO2 ball-shaped nano-particles were deposited on silicon substrates by a thermal oxidation approach. With an increase in the annealing temperature the surface morphology and the structure of TiO2 remained stable, exhibiting good heat stability; meanwhile, the hydrogen production rate also increased. The femtosecond pump-probe spectroscopic study showed that the lifetime of carriers of the samples as- deposited and post-annealed at different temperatures were longer than 20 ps.
Keywords TiO2      photocatalysis      pump-probe spectroscopy      
Issue Date: 05 December 2009
 Cite this article:   
Sho OGIHARA,Wen-can ZHOU,Zheng-jun ZHANG, et al. Nanostructured TiO 2 photocatalyst and pump-probe spectroscopic study[J]. Front. Mater. Sci., 2009, 3(4): 403-408.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-009-0055-7
https://academic.hep.com.cn/foms/EN/Y2009/V3/I4/403
Gao L, Zheng S, Zhang Q H. Nano Titanium Oxides and Their Applications. Beijing: Chemical Industry Press, 2002
Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results. Chemical Reviews, 1995, 95(3): 735―758

doi: 10.1021/cr00035a013
Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2000, 1(1): 1―21

doi: 10.1016/S1389-5567(00)00002-2
Onda K, Li B, Petek H. Surface femtochemistry: Photocatalytic reaction dynamicsof methanol/TiO2(110). In: The 14th International Conference on Ultrafast Phenomena. Niigata, Japan, 2004
Iwata K, Takaya T, Hamaguchi H, et al. Carrier dynamics in TiO2 and Pt/TiO2 powders observed by femtosecondtime-resolved near-infrared spectroscopy at a spectral region of 0.9―1.5?μmwith the direct absorption method. TheJournal of Physical Chemistry B, 2004, 108(52): 20233―20239

doi: 10.1021/jp047531k
Tamaki Y, Furube A, Murai M, et al. Direct observation of reactive trapped holesin TiO2 undergoing photocatalytic oxidationof adsorbed alcohols:?Evaluation of the reaction rates and yields. Journal of the American Chemical Society, 2006, 128(2): 416―417

doi: 10.1021/ja055866p
Dai Z R, Pan Z W, Wang Z L. Novel nanostructures of functional oxides synthesizedby thermal evaporation. Advanced FunctionalMaterials, 2003, 13(1): 9―24

doi: 10.1002/adfm.200390013
Ting C-C, Chen S-Y, Liu D-M. Structural evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputteredTi films. Journal of Applied Physics, 2000, 88(8): 4628―4633

doi: 10.1063/1.1309039
Nagai M, Shimano R, Kuwata-Gonokami M. Direct creation of electron-hole plasmaby exciton Mott transition in CuCl. Journalof Luminescence, 2000, 87–89: 192―194

doi: 10.1016/S0022-2313(99)00258-6
Nagai M, Kuwata-Gonokami M. Time-resolved reflectionspectroscopy of the spatiotemporal dynamics of photo-excited carriersin Si and GaAs. Journal of the PhysicalSociety of Japan, 2002, 71(9): 2276―2279

doi: 10.1143/JPSJ.71.2276
[1] Xuhua YE, Xiangyu YAN, Xini CHU, Shixiang ZUO, Wenjie LIU, Xiazhang LI, Chao YAO. Construction of upconversion fluoride/attapulgite nanocomposite for visible-light-driven photocatalytic nitrogen fixation[J]. Front. Mater. Sci., 2020, 14(4): 469-480.
[2] Qizhi TIAN, Yajun JI, Yiyi QIAN, Abulikemu ABULIZI. Synthesis of defect-rich hierarchical sponge-like TiO2 nanoparticles and their improved photocatalytic and photoelectrochemical performance[J]. Front. Mater. Sci., 2020, 14(3): 286-295.
[3] Yuming CHEN, Wenhao TANG, Jingru MA, Ben GE, Xiangliang WANG, Yufen WANG, Pengfei REN, Ruiping LIU. Nickel-decorated TiO2 nanotube arrays as a self-supporting cathode for lithium--sulfur batteries[J]. Front. Mater. Sci., 2020, 14(3): 266-274.
[4] Zhiyu ZHANG, Lixia HU, Hui ZHANG, Liping YU, Yunxiao LIANG. Large-sized nano-TiO2/SiO2 mesoporous nanofilm-constructed macroporous photocatalysts with excellent photocatalytic performance[J]. Front. Mater. Sci., 2020, 14(2): 163-176.
[5] Pengfei ZHU, Zhihao REN, Ruoxu WANG, Ming DUAN, Lisi XIE, Jing XU, Yujing TIAN. Preparation and visible photocatalytic dye degradation of Mn-TiO2/sepiolite photocatalysts[J]. Front. Mater. Sci., 2020, 14(1): 33-42.
[6] Zhihong JING, Xiue LIU, Yan DU, Yuanchun HE, Tingjiang YAN, Wenliang WANG, Wenjuan LI. Synthesis, characterization, antibacterial and photocatalytic performance of Ag/AgI/TiO2 hollow sphere composites[J]. Front. Mater. Sci., 2020, 14(1): 1-13.
[7] Xiangyu YAN, Da DAI, Kun MA, Shixiang ZUO, Wenjie LIU, Xiazhang LI, Chao YAO. Microwave hydrothermal synthesis of lanthanum oxyfluoride nanorods for photocatalytic nitrogen fixation: Effect of Pr doping[J]. Front. Mater. Sci., 2020, 14(1): 43-51.
[8] Elias ASSAYEHEGN, Ananthakumar SOLAIAPPAN, Yonas CHEBUDIE, Esayas ALEMAYEHU. Influence of temperature on preparing mesoporous mixed phase N/TiO2 nanocomposite with enhanced solar light photocatalytic activity[J]. Front. Mater. Sci., 2019, 13(4): 352-366.
[9] Liuxin YANG, Zhou CHEN, Jian ZHANG, Chang-An WANG. SrTiO3/TiO2 heterostructure nanowires with enhanced electron--hole separation for efficient photocatalytic activity[J]. Front. Mater. Sci., 2019, 13(4): 342-351.
[10] Timur Sh. ATABAEV, Anara MOLKENOVA. Upconversion optical nanomaterials applied for photocatalysis and photovoltaics: Recent advances and perspectives[J]. Front. Mater. Sci., 2019, 13(4): 335-341.
[11] Pengcheng WU, Chang LIU, Yan LUO, Keliang WU, Jianning WU, Xuhong GUO, Juan HOU, Zhiyong LIU. A novel black TiO2/ZnO nanocone arrays heterojunction on carbon cloth for highly efficient photoelectrochemical performance[J]. Front. Mater. Sci., 2019, 13(1): 43-53.
[12] Chuan DENG, Xianxian WEI, Ruixiang LIU, Yajie DU, Lei PAN, Xiang ZHONG, Jianhua SONG. Synthesis of sillenite-type Bi36Fe2O57 and elemental bismuth with visible-light photocatalytic activity for water treatment[J]. Front. Mater. Sci., 2018, 12(4): 415-425.
[13] Palepu Teja RAVINDAR, Vidya Sagar CHOPPELLA, Anil Kumar MOKSHAGUNDAM, M. KIRUBA, Sunil G. BABU, Korupolu Raghu BABU, L. John BERCHMANS, Gosipathala SREEDHAR. Enhanced visible-light-driven photocatalysis of Bi2YO4Cl heterostructures functionallized by bimetallic RhNi nanoparticles[J]. Front. Mater. Sci., 2018, 12(4): 405-414.
[14] Zhongchi WANG, Gongsheng SONG, Jianle XU, Qiang FU, Chunxu PAN. Electrospun titania fibers by incorporating graphene/Ag hybrids for the improved visible-light photocatalysis[J]. Front. Mater. Sci., 2018, 12(4): 379-391.
[15] Ruirui LIU, Zhijiang JI, Jing WANG, Jinjun ZHANG. Mesocrystalline TiO2/sepiolite composites for the effective degradation of methyl orange and methylene blue[J]. Front. Mater. Sci., 2018, 12(3): 292-303.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed