Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2009, Vol. 3 Issue (4) : 386-394    https://doi.org/10.1007/s11706-009-0068-2
Research articles
Crystal morphology, mechanical property and non-isothermal crystallization kinetics of poly(trimethylene terephthalate)/maleinized poly(ethylene-octene) copolymer binary blends
Ming-tao RUN,Zeng-kun WANG,Xin LI,Hong-chi ZHAO,
Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China;
 Download: PDF(430 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The crystal morphology, impact strength and nonisothermal crystallization kinetics of poly(trimethylene terephthalate)/maleinized poly(ethylene-octene) (PTT/PEO-MA) copolymer blends were studied by using the polarized optical microscopy, impact tester and differential scanning calorimetry (DSC). Avrami theory modified by Jeziorny, Ozawa and Mo theories were used to study the non-isothermal crystallization kinetics of the blends, respectively. The results suggest that these methods are suitable for analyzing the crystallization kinetics of the PTT/PEO-MA blends. The PEO-MA component, serving as a nucleation agent in blends, can increase the start crystallization temperatures and accelerate the crystallization rate of the blends. The crystal dimensions are predominantly three-dimensional growths, judged from the Avrami exponent n and the Ozawa exponent m, but the spherulites in blends are much smaller than those in pure PTT. The crystallization active energy suggests that the PEO-MA component can make the PTT component easy to crystallize in blends. The blend has the highest Izod impact strength as PEO-MA content is 3wt.%. Considering both the crystallization kinetic analyses results and the crystal morphology of the blends, the modified Avrami method is believed to be the most useful in reflecting the crystallization of the blends.
Keywords poly(trimethylene terephthalate) (PTT)      nonisothermal crystallization kinetics      maleinized poly(ethylene-octene) copolymer (PEO-MA)      blend      DSC      
Issue Date: 05 December 2009
 Cite this article:   
Ming-tao RUN,Xin LI,Zeng-kun WANG, et al. Crystal morphology, mechanical property and non-isothermal crystallization kinetics of poly(trimethylene terephthalate)/maleinized poly(ethylene-octene) copolymer binary blends[J]. Front. Mater. Sci., 2009, 3(4): 386-394.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-009-0068-2
https://academic.hep.com.cn/foms/EN/Y2009/V3/I4/386
Schauhoff S. Newdevelopments in the production of polytrimethylene terephthalate (PTT). Chemical Fibers International, 1996, 46: 4263―4264
Traub HL, Hirt P, Herlinger H. Mechanical properties of fibers made of poly(trimethyleneterephthalate). Chemical Fibers International, 1995, 45: 4110―4111
Zeng W, Li H H, Liu T X, et al. A study on the double melting behavior of poly(trimethyleneterephthalate). Chinese Science Bulletin, 2008, 53: 2145―2152

doi: 10.1007/s11434-008-0301-x
Kalakkunnath S, Kalika D S. Dynamic mechanical and dielectricrelaxation characteristics of poly(trimethylene terephthalate). Polymer, 2006, 47: 7085―7094

doi: 10.1016/j.polymer.2006.08.005
Jia S Y, Ren Y R, Zhang D, et al. Stannous oxalate: An efficient catalyst forpoly(trimethylene terephthalate) synthesis. Science in China- Series B: Chemistry, 2008, 51: 257―262

doi: 10.1007/s11426-007-0124-7
Zhang J L. Study of poly(trimethylene terephthalate) as an engineering thermoplasticsmaterial. Journal of Applied Polymer Science, 2004, 91: 1657―1666

doi: 10.1002/app.13322
Wang B J, Li C Y, Hanzlicek J, et al. Poly(trimethylene terethalate) crystal structureand morphology in different length scales. Polymer, 2001, 42: 7171―7180

doi: 10.1016/S0032-3861(01)00046-5
Chuah H. Corterrapoly(trimethylene terephthalate) new polymeric fiber for carpets. Chemical Fibers International, 1996, 46: 6424―6428
Nujalee D, Pitt S. Nonisothermal melt-crystallizationkinetics for three linear aromatic polyesters. Thermochimica Acta, 2003, 406: 207―220

doi: 10.1016/S0040-6031(03)00258-2
Xue M L, Sheng J, Yu Y L. Non-isothermal melt-crystallization kinetics and spherulitesmorphology of poly(trimethylene terephthalate). European Polymer Journal, 2004, 40: 811―818

doi: 10.1016/j.eurpolymj.2003.12.009
Nattapol A, Pitt S, Manit N. Non-isothermal melt-crystallization kinetics of poly(trimethyleneterephthalate). Polymer Testing, 2004, 23: 817―826

doi: 10.1016/j.polymertesting.2004.03.001
Xue M L, Yu Y L, Chuah H H, et al. Melting and crystallization behaviors of compatibilizedpoly(trimethylene terephthalate)/ acrylonitrile-butadiene-styreneblends. Journal of Applied Polymer Science, 2008, 108: 3334―3345

doi: 10.1002/app.27926
Liang H, Xie F, Chen B, et al. Miscibility and melting behavior of poly(ethyleneterephthalate)/poly(trimethylene terephthalate) blends. Journal of Applied Polymer Science, 2008, 107: 431―437

doi: 10.1002/app.27081
Xue M L, Yu Y L, Chuah H H, et al. Miscibility and compatibilization of poly(trimethyleneterephthalate)/acrylonitrile-butadiene-styrene blends. European Polymer Journal, 2007, 43: 3826―3837

doi: 10.1016/j.eurpolymj.2007.06.048
Run M T, Wang Y J, Yao C G, et al. Isothermal crystallization kinetics and meltingbehavior of crystalline/crystalline blends of poly(trimethylene terephthalate)and poly(ethylene 2,6-naphthalate). Journalof Applied Polymer Science, 2007, 103: 3316―3325

doi: 10.1002/app.25254
Hu X B, Alan J L. Non-isothermal crystallizationof poly(trimethylene terephthalate) (PTT)/clay nanocomposites. Macromolecular Chemistry and Physics, 2004, 205: 574―580

doi: 10.1002/macp.200300119
Chiu F C, Huang K H, Yang J C. Miscibility and thermal properties of melt-mixed poly(trimethyleneterephthalate)/amorphous copolyester blends. Journal of Polymer Science Part B: Polymer Physics, 2003, 41: 2264―2274

doi: 10.1002/polb.10590
Chiu F C, Lee H Y, Wang Y H. Thermal properties and phase morphology of melt-mixedpoly(trimethylene terephthalate)/poly(hexamethylene isophthalamide)blends. Journal of Applied Polymer Science, 2008, 107: 3831―3839

doi: 10.1002/app.27556
Soccio M, Lotti N, Finelli L, et al. crystallization behavior and morphology of poly(propyleneterephthalate) copolymers containing neopenthyl glycol moieties. Journal of Polymer Science Part B: Polymer Physics, 2008, 46: 818―830

doi: 10.1002/polb.21420
Chen X Q, Xu J J, Lu H B, et al. Isothermal crystallization kinetics of poly(butylenesterephthalate)/attapulgite nanocomposites. Journal of Polymer Science Part B: Polymer Physics, 2006, 44: 2112―2121

doi: 10.1002/polb.20870
Yang J, Chen X D, Fu R W, et al. Dynamic rheological and morphological studyof the compatibility of thermoplastic polyurethane/ethylene-octenecopolymer blends. Journal of Applied PolymerScience, 2008, 109: 3452―3457

doi: 10.1002/app.28412
Aro′stegui A, Naza′bal J. compatibilization of a poly(butylenesterephthalate)/poly(ethylene octene) copolymer blends with differentamounts of an epoxy resin. Journal of AppliedPolymer Science, 2004, 91: 260―269

doi: 10.1002/app.13154
Aro′stegui A, Gaztelumendi M, Naza′bal J. Toughened poly(butylenes terephthalate)by blending with a metallocenic Poly(ethylene octene) copolymer. Polymer, 2001, 42: 9565―9574

doi: 10.1016/S0032-3861(01)00481-5
Guerrica-Echevarría G, Eguiazábal J I, Nazábal J. Influence of compatibilizationon the mechanical behavior of poly(trimethylene terephthalate)/poly(ethylene-octene)blends. European Polymer Journal, 2007, 43: 1027―1037

doi: 10.1016/j.eurpolymj.2006.11.036
Chen J, Yang W, Liu Z Y, et al. Influence of heat treatment on toughening ofpolyehtylene-octene copolymer (M-PEO)/poly(ethylene terephthalate)(PET) blends. Journal of Materials Science, 2004, 39: 4049―4051

doi: 10.1023/B:JMSC.0000031493.09473.a9
Lim J W, Hassan A, Rahmat A R, et al. Rubber-toughened polypropylene nanocomposite:effect of polyethylene octene copolymer on mechanical properties andphase morphology. Journal of Applied PolymerScience, 2006, 99: 3441―3450

doi: 10.1002/app.22907
Yu Z Z, Ou Y C, Hu G H. Influence of interfacial adhesion on toughening of polyethylene-octeneelastomer/nylon6 blends. Journal of AppliedPolymer Science, 1998, 69: 1711―1718

doi: 10.1002/(SICI)1097-4628(19980829)69:9<1711::AID-APP4>3.0.CO;2-E
Ma X Y, Liang G Z, Lu H J, et al. Novel intercalated nanocomposites of polypropylene,organic rectorite, and poly(ethylene octene) elastomer: Morphologyand mechanical properties. Journal of AppliedPolymer Science, 2005, 97:?1907―1914

doi: 10.1002/app.21931
Liao H T, Wu C S. Study on the properties ofpolyethylene-octene elastomer/wood flour blends. Journal of Applied Polymer Science, 2003, 88:?1919―1924

doi: 10.1002/app.11858
Wu C S, Lai S M, Liao H T. Graft reaction of acrylic acid onto metallocene-basedpolyethylene-octene elastomer. Journalof Applied Polymer Science, 2002, 85:?2905―2912

doi: 10.1002/app.10806
Cheng H Y, Tian M, Zhang L Q. Toughening of recycled poly(ethylene terephthalate)/glassfiber blends with ethylene-butyl acrylate-glycidyl methacrylate copolymerand maleic anhydride grafted polyethylene-octene rubber. Journal of Applied Polymer Science, 2008, 109:?2795―2801

doi: 10.1002/app.27564
Dai S S, Ye L. Effect of SEPS as a novelcompatibilizer on the properties and morphology of PP/PC/M-PEO blends. Journal of Applied Polymer Science, 2008, 108:?3531―3541

doi: 10.1002/app.27978
Jeziorny A. Parameterscharacterizing the kinetics of the non-isothermal crystallizationof poly(ethylene terephthalate) determined by d.s.c. Polymer, 1978, 19: 1142―1150

doi: 10.1016/0032-3861(78)90060-5
Liu M Y, Zhao Q X, Wang Y D, et al. Melting behaviors, isothermal and nonisothermalcrystallization kinetics of nylon 1212. Polymer, 2003, 44: 2537―2545

doi: 10.1016/S0032-3861(03)00101-0
Ozawa T. Kineticsof nonisothermal crystallization. Polymer, 1971, 12: 150―157

doi: 10.1016/0032-3861(71)90041-3
Xu G, Shi W F, Hu P, et al. Crystallization kinetics of polypropylene withhyperbranched polyurethane acrylate being used as a toughening agent. European Polymer Journal, 2005, 41: 1828―1837

doi: 10.1016/j.eurpolymj.2005.02.037
Hong P D, Chung W T, Hsu C F. Crystallization kinetics and morphology of poly(trimethyleneterephthalate). Polymer, 2002, 43: 3335―3344

doi: 10.1016/S0032-3861(02)00163-5
[1] Jing SUN, Lu YAO, Qiao-Ling ZHAO, Jin HUANG, Rui SONG, Zhi MA, Ling-Hao HE, Wei HUANG, Yong-Mei HAO. Modification on crystallization of poly(vinylidene fluoride) (PVDF) by solvent extraction of poly(methyl methacrylate) (PMMA) in PVDF/PMMA blends[J]. Front Mater Sci, 2011, 5(4): 388-400.
[2] LI Juntao, ZHENG Yanjun, CUI Lishan. Transformation characteristics of TiNi/TiNi alloys synthesized by explosive welding[J]. Front. Mater. Sci., 2007, 1(4): 351-355.
[3] FANG Zhengping, WANG Jianguo, GU Aijuan, TONG Lifang. Curing behavior and kinetic analysis of epoxy resin/multi-walled carbon nanotubes composites[J]. Front. Mater. Sci., 2007, 1(4): 415-422.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed