Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2010, Vol. 4 Issue (1) : 84-89    https://doi.org/10.1007/s11706-010-0002-7
Research articles
Effect of AAc-GA content on swelling behaviors of temperature-sensitive PNIPAAm-based hydrogels
You-Yu DONG1,Li CHEN1,Hao-Jie LI1,Xiao-Ling HE2,Fan-Yong YAN3,
1.Tianjin Key Laboratory of Fiber Modification and Functional Fiber, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300160, China; 2.Tianjin Key Laboratory of Fiber Modification and Functional Fiber, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300160, China;School of Environment and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300160, China; 3.School of Environment and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300160, China;
 Download: PDF(306 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A series of temperature-sensitive poly(NIPAAm-co-AAc-GA) hydrogels were synthesized by the copolymerization of glycyrrhetinic acid with vinyl monomer (AAc-GA) and N-isopropylacrylamide (NIPAAm) in N, N-dimethylformamide (DMF). Since GA has the specific binding capacity to asialoglycoprotein receptors on the membrane of hepatocyte, the hydrogel with GA could be expected as good candidate for hepatic cell culture. The results showed that macroporous and channel network structure was formed in the hydrogel matrix. With increasing the AAc-GA content, the swelling ratios of hydrogels and lower critical solution temperature (LCST) increased because of the hydrophilic group of AAc-GA and the macroporous structure. In addition, the prepared hydrogels could respond quickly to temperature and exhibited good reversible temperature-responsive characteristics.
Keywords glycyrrhetinic acid      temperature-responsive      N-isopropylacrylamide (NIPAAm)      hydrogel      
Issue Date: 05 March 2010
 Cite this article:   
Fan-Yong YAN,You-Yu DONG,Hao-Jie LI, et al. Effect of AAc-GA content on swelling behaviors of temperature-sensitive PNIPAAm-based hydrogels[J]. Front. Mater. Sci., 2010, 4(1): 84-89.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-010-0002-7
https://academic.hep.com.cn/foms/EN/Y2010/V4/I1/84
Lee K Y, Mooney D J. Hydrogels for tissue engineering. Chemical Reviews, 2001, 101(7): 1869–1879

doi: 10.1021/cr000108x
Hoffman A S. Hydrogels for biomedical applications. Annals of the New York Academy of Science, 2001, 944(0): 62–73
Serizawa T, Wakita K, Akashi M. Rapid deswelling of porous poly(N-isopropylacrylamide)hydrogels prepared by incorporation of silica particles. Macromolecules, 2002, 35(1): 10–12

doi: 10.1021/ma011362+
Shi J, Alves N M, Mano J F. Thermally smart temperature-responsive biomineralizationonto biodegradable polymeric substrates. Advanced Functional Materials, 2007, 17(16): 3312– 3318

doi: 10.1002/adfm.200601206
Jeong B, Kim S W, Bae Y H. Thermo-sensitive sol-gel reversible hydrogels. Advanced Drug Delivery Reviews, 2002, 54(1): 37–51

doi: 10.1016/S0169-409X(01)00242-3
Xue W, Hamley I W, Huglin M B. Rapid swelling and deswelling of thermoreversible hydrophobicallymodified poly(N-isopropylacrylamide) hydrogels prepared by freezingpolymerisation. Polymer, 2002, 43(19): 5181–5186

doi: 10.1016/S0032-3861(02)00396-8
Leroux J C, Roux E, Garrec D L, et al. N-isopropylacrylamide copolymers for the preparationof pH-sensitive liposomes and polymeric micelles. Journal of Controlled Release, 2001, 72(1–3): 71–84

doi: 10.1016/S0168-3659(01)00263-2
Zhu P W, Napper D H. Effect of heating rate onnanoparticle formation of poly(N-isopropylacrylamide)-poly(ethyleneglycol) block copolymer microgels. Langmuir, 2000, 16(22): 8543–8545

doi: 10.1021/la000489+
Zhao Y, Cao Y, Yang Y L, et al. Rheological study of the sol-gel transitionof hybrid gel. Macromolecules, 2003, 36(3): 855–859

doi: 10.1021/ma020919y
He X L, Yu S, Dong Y Y, et al. Preparation and properties of a novel thermo-responsivepoly(N-isopropylacrylamide) hydrogel containing glycyrrhetinic acid. Journal of Materials Science, 2009, 44(15): 4078–4086

doi: 10.1007/s10853-009-3588-3
Zhang X Z, Yang Y Y, Wang F J, et al.. Thermosensitive poly(N-isopropylacrylamide-co-acrylicacid) hydrogels with expanded network structures and improved oscillatingswelling-deswelling properties. Langmuir, 2002, 18(6): 2013–2018

doi: 10.1021/la011325b
Li X Y, Wu W H, Liu W Q. Synthesis and properties of thermo-responsive guar gum/poly(N-isopropylacrylamide)interpenetrating polymer network hydrogels. Carbohydrate Polymers, 2008, 71(3): 394–402

doi: 10.1016/j.carbpol.2007.06.005
[1] Yuxuan MAO, Mingming PAN, Huilin YANG, Xiao LIN, Lei YANG. Injectable hydrogel wound dressing based on strontium ion cross-linked starch[J]. Front. Mater. Sci., 2020, 14(2): 232-241.
[2] Zhicun WANG, Xiaoman HAN, Yixi WANG, Kenan MEN, Lin CUI, Jianning WU, Guihua MENG, Zhiyong LIU, Xuhong GUO. Facile preparation of low swelling, high strength, self-healing and pH-responsive hydrogels based on the triple-network structure[J]. Front. Mater. Sci., 2019, 13(1): 54-63.
[3] Liu YUAN, Wenshuai FAN, Linyingjun HAN, Changan GUO, Zuoqin YAN, Meifang ZHU, Xiumei MO. Evaluation of hydrogels for soft tissue adhesives in vitro and in vivo analyses[J]. Front. Mater. Sci., 2018, 12(1): 95-104.
[4] Fengyi GUAN,Jiaju LU,Xiumei WANG. A novel honeycomb cell assay kit designed for evaluating horizontal cell migration in response to functionalized self-assembling peptide hydrogels[J]. Front. Mater. Sci., 2017, 11(1): 13-21.
[5] Xi LIU,Bin PI,Hui WANG,Xiu-Mei WANG. Self-assembling peptide nanofiber hydrogels for central nervous system regeneration[J]. Front. Mater. Sci., 2015, 9(1): 1-13.
[6] Ting-Ting GAO,Ming KONG,Xiao-Jie CHENG,Gui-Xue XIA,Yuan-Yuan GAO,Xi-Guang CHEN,Dong Su CHA,Hyun Jin PARK. A thermosensitive chitosan-based hydrogel for controlled release of insulin[J]. Front. Mater. Sci., 2014, 8(2): 142-149.
[7] Min-Dan WANG, Peng ZHAI, David J. SCHREYER, Ruo-Shi ZHENG, Xiao-Dan SUN, Fu-Zhai CUI, Xiong-Biao CHEN. Novel crosslinked alginate/hyaluronic acid hydrogels for nerve tissue engineering[J]. Front Mater Sci, 2013, 7(3): 269-284.
[8] Wei-Fang LIU, Chuan-Zhen KANG, Ming KONG, Yang LI, Jing SU, An YI, Xiao-Jie CHENG, Xi-Guang CHEN. Controlled release behaviors of chitosan/α, β- glycerophosphate thermo-sensitive hydrogels[J]. Front Mater Sci, 2012, 6(3): 250-258.
[9] Zong-Jian LIU, Yan-Li LIANG, Fang-Fang GENG, Fang LV, Rong-Ji DAI, Yu-Kui ZHANG, Yu-Lin DENG. Preparation of poly(N-isopropylacrylamide) brush grafted silica particles via surface-initiated atom transfer radical polymerization used for aqueous chromatography[J]. Front Mater Sci, 2012, 6(1): 60-68.
[10] Jin HE, Xiu-Mei WANG, Myron SPECTOR, Fu-Zhai CUI. Scaffolds for central nervous system tissue engineering[J]. Front Mater Sci, 2012, 6(1): 1-25.
[11] Dan-Dan HOU, Xue GENG, Lin YE, Ai-Ying ZHANG, Zeng-Guo FENG, . Novel supramolecular hydrogels made via Michael-type addition reaction of dithiothreitol with self-assembly of α-cyclodextrins and acryloyl-terminated 3-arm PEG[J]. Front. Mater. Sci., 2010, 4(1): 70-77.
[12] Kui-lin DENG, Peng-fei ZHANG, Xiao-bo REN, Hai-bin ZHONG, Yu-bo GOU, Li-rong DONG, Qian LI, . Synthesis and characterization of a pH/temperature responsive glycine-mediated hydrogel for drug release[J]. Front. Mater. Sci., 2009, 3(4): 374-379.
[13] Yue-teng WEI, Fu-zhai CUI, Wei-ming TIAN, . Fabrication and characterization of hyaluronic-acid-based antigen sensitive degradable hydrogel[J]. Front. Mater. Sci., 2009, 3(4): 353-358.
[14] XIE Zhiguo, HOU Dandan, YE Lin, ZHANG Aiying, FENG Zengguo. Enzyme-catalyzed preparation of supramolecular structured hydrogel of polypseudorotaxanes derived from the self-assembly of α-CDs with 3-arm p-hydroxyphenylpropionate terminated PEG[J]. Front. Mater. Sci., 2007, 1(4): 395-400.
[15] LIN Zhihui, WU Wenhui, WANG Jianquan, JIN Xin. Swelling behaviors, tensile properties and thermodynamic interactions in APS/HEMA copolymeric hydrogels[J]. Front. Mater. Sci., 2007, 1(4): 427-431.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed