Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2010, Vol. 4 Issue (1) : 34-44    https://doi.org/10.1007/s11706-010-0004-5
Research articles
The potential of Zr-based bulk metallic glasses as biomaterials
Qi CHEN1,Lin LIU1,Sheng-Min ZHANG2,
1.The State Key Lab of Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China; 2.Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, China;
 Download: PDF(728 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Zr-based bulk metallic glasses (BMGs) are a new type of metallic materials with disordered atomic structure that exhibit high strength and high elastic strain, relatively low Young’s modulus, and excellent corrosion resistance and biocompatibility. The combination of these unique properties makes the Zr-based BMGs very promising for biomaterials applications. In this review article, the authors give an overview of the recent progress in the study of biocompatibility of Zr-based BMGs, especially the relevant work that has been done in the metallic glasses group in Huazhong University of Science and Technology (HUST), including the development of Ni-free Zr-based BMGs, the mechanical and wear properties, the bio-corrosion resistance, the in vitro and in vivo biocompatibility and the bioactive surface modification of these newly developed BMGs.
Keywords Zr-based bulk metallic glasses      biocompati-bility      bioactive surface modification      
Issue Date: 05 March 2010
 Cite this article:   
Qi CHEN,Sheng-Min ZHANG,Lin LIU. The potential of Zr-based bulk metallic glasses as biomaterials[J]. Front. Mater. Sci., 2010, 4(1): 34-44.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-010-0004-5
https://academic.hep.com.cn/foms/EN/Y2010/V4/I1/34
Inoue A. Stabilizationof metallic supercooled liquid and bulk amorphous alloys. Acta Materialia, 2000, 48(1): 279–306

doi: 10.1016/S1359-6454(99)00300-6
Johnson W L. Bulk glass-forming metallic alloys: science and technology. MRS Bulletin, 1999, 24(10): 42–56
Wang W H, Dong C, Shek C H. Bulk metallic glasses. MaterialsScience and Engineering: R: Reports, 2004, 44(2–3): 45–89

doi: 10.1016/j.mser.2004.03.001
Inoue A. Stabilizationand high strain-rate superplasticity of metallic supercooled liquid. Materials Science and Engineering: A, 1999, 267(2): 171–183

doi: 10.1016/S0921-5093(99)00089-1
Kawamura Y, Shibata T, Inoue A, et al. Workability of the supercooled liquid in theZr65Al10Ni10Cu15 bulk metallic glass. Acta Materialia, 1997, 46(1): 253–263

doi: 10.1016/S1359-6454(97)00235-8
Hiromoto S, Tsai A P, Sumita M, et al. Effect of chloride ion on the anodic polarizationbehavior of the Zr65Al7.5Ni10Cu7.5 amorphousalloy in phosphate buffered solution. CorrosionScience, 2000, 42(9): 1651–1660

doi: 10.1016/S0010-938X(00)00022-6
Hiromoto S, Tsai A P, Sumita M, et al. Effect of pH on the polarization behavior ofZr65Al7.5Ni10Cu17.5 amorphous alloy in aphosphate-buffered solution. CorrosionScience, 2000, 42(9): 2193–2200

doi: 10.1016/S0010-938X(00)00056-1
Hiromoto S, Tsai A P, Sumita M, et al. Effects of surface finishingand dissolved oxygen on the polarization behavior of Zr65Al7.5Ni10Cu17.5 amorphous alloy in phosphate bufferedsolution. Corrosion Science, 2000, 42(12): 2167–2185

doi: 10.1016/S0010-938X(00)00043-3
Hiromoto S, Hanawa T. Re-passivation current ofamorphous Zr65Al7.5Ni10Cu17.5 alloy in a Hanks’balanced solution. Electrochimica Acta, 2002, 47(9): 1343–1349

doi: 10.1016/S0013-4686(01)00876-3
Morrison M L, Buchanan R A, Peker A, et al. Cyclic-anodic-polarization studies of a Zr41.2Ti13.8Ni10Cu12.5Be22.5 bulk metallicglass. Intermetallics, 2004, 12(10–11): 1177–1181
Morrison M L, Buchanan R A, Leon R V, et al. The electrochemical evaluation of a Zr-basedbulk metallic glass in a phosphate-buffered saline electrolyte. Journal of Biomedical Materials Research Part A, 2005, 74(3): 430–438

doi: 10.1002/jbm.a.30361
Horton J A, Parsell D E. Biomedical potential of azirconium-based bulk metallic glass. MaterialResearch Society Symposium Proceedings, 2003, 754: CC1.5.1
Maruyama N, Hiromoto S, Ohnuma M, et al. Fretting fatigue properties of Zr-based bulkamorphous alloy in phosphate buffered saline solution. Journal of the Japan Institute of Metals, 2005, 69(6): 481–487

doi: 10.2320/jinstmet.69.481
Wataha J C, Lockwood P E, Schedle A. Effect of silver, copper, mercury, and nickel ions oncellular proliferation during extended, low-dose exposures. Journal of Biomedical Materials Research, 2000, 52(2): 360–364

doi: 10.1002/1097-4636(200011)52:2<360::AID-JBM16>3.0.CO;2-B
McGregor D B, Baan R A, Partensky C, et al. Evaluation of the carcinogenic risks to humansassociated with surgical implants and other foreign bodies –a report of an IARC Monographs Programme Meeting. European Journal of Cancer, 2000, 36(3): 307–313

doi: 10.1016/S0959-8049(99)00312-3
Jin K F, Löffler J F. Bulk metallic glass formationin Zr-Cu-Fe-Al alloys. Applied PhysicsLetters, 2005, 86(24): 241909 (3 pages)
Qiu C L, Chen Q, Liu L, et al. A novel Ni-free Zr-based bulk metallic glasswith enhanced plasticity and good biocompatibility. Scripta Materialia, 2006, 55(7): 605–608

doi: 10.1016/j.scriptamat.2006.06.018
Buzzi S, Jin K F, Uggowitzer P J, et al. Cytotoxicity of Zr-based bulk metallic glasses. Intermetallics, 2006, 14(7): 729–734

doi: 10.1016/j.intermet.2005.11.003
Zberg B, Arata E R, Uggowiter P J, et al. Tensile properties of glassy MgZnCa wires andreliability analysis using Weibull statistics. Acta Materialia, 2009, 57(11): 3223–3231

doi: 10.1016/j.actamat.2009.03.028
Zberg B, Uggowiter P J, Löffler J F. MgZnCa glasses without clinically observablehydrogen evolution for biodegradable implants. Nature Materials, 2009, 8(11): 887–891

doi: 10.1038/nmat2542
Klements W, Willens R H, Duwez P. Non-crystalline structure in solidified gold-siliconalloys. Nature, 1960, 187(4740): 869–870

doi: 10.1038/187869b0
Luborsky F E. Amorphous Metallic Alloys. London: Butterworths, 1983
Inoue A, Zhang T, Masumoto T. Al-La-Ni amorphous alloys with a wide supercooled liquidregion. Materials Transactions, JIM, 1989, 30(12): 965–972
Peker A, Johnson W L. A highly processable metallic-glass:Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Applied Physics Letters, 1993, 63(17): 2342–2344

doi: 10.1063/1.110520
Liu L, Qiu C L, Sun M, et al. Improvements in the plasticity and biocompatibilityof ZrCuNiAl bulk metallic glass by the microalloying of Nb. Materials Science and Engineering: A, 2007, 449–451: 193–197

doi: 10.1016/j.msea.2006.02.255
Liu L, Qiu C L, Chen Q, et al. Deformation behavior, corrosion resistance andcytotoxicity of Ni-free Zr-based bulk metallic glasses. Journal of Biomaterials Research Part A, 2008, 86(1): 160–169

doi: 10.1002/jbm.a.31425
Liu Z, Chan K C, Liu L. Enhanced glass forming ability and plasticity of a Ni-freeZr-based bulk metallic glass. Journal ofAlloys and Compounds, 2009, 487(1–2): 152–156

doi: 10.1016/j.jallcom.2009.08.030
Zhang C, Li N, Pan J, et al. Effect of Ag addition on the glass-forming abilityand bio-corrosion resistance of Zr-Co-Al bulk metallic glasses. Journal of Alloys and Compounds, 2009 (submitted)
Schroers J, Johnson W L. Ductile bulk metallic glass. Physical Review Letters, 2004, 93(25): 255506 (4 pages)
Hofmann D C, Suh J-Y, Wiest A, et al. Designing metallic glass matrix composites withhigh toughness and tensile ductility. Nature, 2008, 451(7182): 1085–1089

doi: 10.1038/nature06598
Liu Y H, Wang G, Wang R J, et al. Super plastic bulk metallic glasses at roomtemperature. Science, 2007, 315(5817): 1385–1388

doi: 10.1126/science.1136726
Pan J, Liu L, Chan K C. Enhanced plasticity by phase separation in CuZrAl bulkmetallic glass with micro-addition of Fe. Scripta Materialia, 2009, 60(9): 822–825

doi: 10.1016/j.scriptamat.2009.01.032
Liu L, Chan K C, Sun M, et al. The effect of the addition of Ta on the structure,crystallization and mechanical properties of Zr-Cu-Ni-Al-Ta bulk metallicglasses. Materials Science and Engineering:A, 2007, 445–446: 697–706

doi: 10.1016/j.msea.2006.10.004
Liu L, Qiu C L, Huang C Y, et al. Biocompatibility of Ni-free Zr-based bulk metallicglasses. Intermetallics, 2009, 17(9): 235–240

doi: 10.1016/j.intermet.2008.07.022
Blau P J. Friction and wear of a Zr-based amorphous metal alloy under dry andlubricated conditions. Wear, 2001, 250(1–12): 431–434
Qiu C L, Liu L, Sun M, et al. The effect of Nb addition on mechanical properties,corrosion behavior and metal ion release of ZrAlCuNi bulk metallicglasses in artificial body fluid. Journalof Biomedical Materials Research Part A, 2005, 75(4): 950–956

doi: 10.1002/jbm.a.30502
Liu L, Yu Y, Chan K C, et al. Surface modification and biocompatibility ofNi-free Zr-based bulk metallic glass. ScriptaMaterialia, 2008, 58(3): 231–234

doi: 10.1016/j.scriptamat.2007.09.040
Liu L, Yu Y, Chan K C, et al. Bio-activation of Ni-free Zr-based bulk metallicglass by surface modification. Intermetallics, 2009 (submitted)
Xu G F, Aksay I A, Groves J T. Continuous crystalline carbonate apatite thin films.A biomimetic approach. Journal of the AmericanChemical Society, 2001, 123(10): 2196–2203

doi: 10.1021/ja002537i
[1] Aditya M. VORA. Vibrational dynamics of Zr-based bulk metallic glasses[J]. Front Mater Sci Chin, 2009, 3(3): 285-300.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed