Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2010, Vol. 4 Issue (1) : 70-77    https://doi.org/10.1007/s11706-010-0010-7
Research articles
Novel supramolecular hydrogels made via Michael-type addition reaction of dithiothreitol with self-assembly of α-cyclodextrins and acryloyl-terminated 3-arm PEG
Dan-Dan HOU,Xue GENG,Lin YE,Ai-Ying ZHANG,Zeng-Guo FENG,
School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China;
 Download: PDF(250 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A kind of novel three-dimensional crosslinked hydrogel was synthesized via Michael-type addition reaction of dithiothreitol (DTT) as a crosslinker/extender towards the self-assembly of α-cyclodextrins (α-CDs) with acryloyl end capped 3-arm PEG. The supramolecular structure of the resulting hydrogels was characterized by using FT-IR, TGA, XRD and DSC measurements. The effect of varying the amount of α-CDs was studied on the crosslinking process. Interestingly, this conjugation reaction is smoothly carried out at physiological temperature and pH in the absence of any sensitizer or catalyst. It appears that these chemically crosslinked hydrogels have the potential to be used as carriers for drug controlled release and scaffolds for injectable tissue engineering.
Keywords α-cyclodextrin (α-CD)      dithiothreitol (DTT)      Michael-type addition reaction      self-assembly      supramolecular structured hydrogel      
Issue Date: 05 March 2010
 Cite this article:   
Dan-Dan HOU,Xue GENG,Lin YE, et al. Novel supramolecular hydrogels made via Michael-type addition reaction of dithiothreitol with self-assembly of α-cyclodextrins and acryloyl-terminated 3-arm PEG[J]. Front. Mater. Sci., 2010, 4(1): 70-77.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-010-0010-7
https://academic.hep.com.cn/foms/EN/Y2010/V4/I1/70
Harada A, Kamachi M. Complex formation betweenpoly(ethylene glycol) and α-cyclodextrin. Macromolecules, 1990, 23(10): 2821―2823

doi: 10.1021/ma00212a039
Jiao H, Goh S H, Valiyaveettil S. Inclusion complexes of multiarm poly(ethylene glycol)with cyclodextrins. Macromolecules, 2002, 35(5): 1980―1983

doi: 10.1021/ma0118163
Sabadini E, Cosgrove T. Inclusion complex formedbetween star-poly(ethylene glycol) and cyclodextrins. Langmuir, 2003, 19(23): 9680―9683

doi: 10.1021/la0353273
Zhu X Y, Chen L, Yan D Y, et al. Supramolecular self-assembly of inclusion complexesof a multiarm hyperbranched polyether with cyclodextrins. Langmuir, 2004, 20(2): 484―490

doi: 10.1021/la035740a
Maglio G, Nese G, Nuzzo M, et al. Synthesis and characterization of star-shapeddiblock poly(ϵ-caprolactone)/poly(ethylene oxide) copolymers. Macromolecular Rapid Communications, 2004, 25(12): 1139―1144

doi: 10.1002/marc.200400113
Li H H, Cheng Y L. In-situ thermoreversible gelation of block and star copolymers of poly(ethyleneglycol) and poly(N-isopropylacrylamide) of varying architectures. Macromolecules, 2001, 34(11): 3710―3715

doi: 10.1021/ma001852m
Li J, Li X, Zhou Z H, et al. Formation of supramolecular hydrogels inducedby inclusion complexation between pluronics and α-cyclodextrin. Macromolecules, 2001, 34(21): 7236―7237

doi: 10.1021/ma010742s
Kang M H, Tooru O, Won K L, et al. Supramolecular-structured hydrogels showinga reversible phase transition by inclusion complexation between poly(ethyleneglycol) grafted dextran and α-cyclodextrin. Macromolecules, 2001, 34(25): 8657―8662

doi: 10.1021/ma0106649
Watanabe J J, Ooya T, Nitta K H, et al. Fibroblast adhesion and proliferation on poly(ethyleneglycol) hydrogels crosslinked by hydrolyzable polyrotaxane. Biomaterials, 2002, 23(20): 4041―4048

doi: 10.1016/S0142-9612(02)00122-9
Lee W K, Ichi T, Ooya T, et al. Novel poly(ethylene glycol) scaffolds crosslinkedby hydrolyzable polyrotaxane for cartilage tissue engineering. Journal of Biomedical Materials Research Part A, 2003, 67(4): 1087―1092

doi: 10.1002/jbm.a.10570
Park H D, Lee W K, Ooya T, et al. Anticoagulant activity of sulfonated polyrotaxanesas blood-compatible materials. Journalof Biomedical Materials Research Part A, 2002, 60(1): 186―190

doi: 10.1002/jbm.10054
Ooya T, Arizono K, Yui N. Synthesis and characterization of an oligopeptide-terminatedpolyrotaxane as a drug carrier. Polymersfor Advanced Technologies, 2000, 11(8): 642―651

doi: 10.1002/1099-1581(200008/12)11:8/12<642::AID-PAT15>3.0.CO;2-8
Feng Z G, Zhao S P. Synthesis and characterizationof biodegradable hydrogels based on photopolymerizable acrylate-terminatedCL-PEG-CL macromers with supramolecular assemblies of α-cyclodextrins. Polymer, 2003, 44(18): 5177―5186

doi: 10.1016/S0032-3861(03)00505-6
Wei H L, He J Y, Sun L G, et al. Gel formation and photopolymerization duringsupramolecular self-assemblies of α-CDs with LA-PEG-LA copolymerend-capped with methacryloyl groups. EuropeanPolymer Journal, 2005, 41(5): 948―957

doi: 10.1016/j.eurpolymj.2004.11.041
Wei H L, Zhang A Y, Qian L J, et al. Supramolecular structured hydrogel preparationbased on self-assemblies of photocurable star-shaped macromers withα-cyclodextrins. Journal of PolymerScience Part A, 2005, 43(13): 2941―2949

doi: 10.1002/pola.20773
Wei H L, Yu H Q, Zhang A Y, et al. Synthesis and characterization of thermosensitiveand supramolecular structured hydrogels. Macromolecules, 2005, 38(20): 8833―8839

doi: 10.1021/ma050887p
Yu H Q, Feng Z G, Zhang A Y, et al. Synthesis and characterization of three-dimensionalcrosslinked networks based on self-assemly of α-cyclodextrinswith thiolated 4-arm PEG using a three-step oxidation. Soft Matter, 2006, 2(4): 343―349

doi: 10.1039/b517206c
Mather B D, Viswanathan K, Miller K M, et al. Michael addition reactions in macromoleculardesign for emerging technologies. Progressin Polymer Science, 2006, 31(5): 487―531

doi: 10.1016/j.progpolymsci.2006.03.001
Lutolf M P, Hubbell J A. Synthesis and physicochemicalcharacterization of end-linked poly(ethylene glycol)-co-peptide hydrogels formed by Michael-typeaddition. Biomacromolecules, 2003, 4(3): 713―722

doi: 10.1021/bm025744e
Lutolf M P, Raeber G P, Zisch A H, et al. Highly anisotropic opto-electronic propertiesof aligned films of self-assembled platinum molecular wires. Advanced Materials, 2003, 15(11): 888―892

doi: 10.1002/adma.200304621
Metters A, Hubbell J A. Network formation and degradationbehavior of hydrogels formed by Michael-type addition reactions. Biomacromolecules, 2005, 6(1): 290―301

doi: 10.1021/bm049607o
Elbert D L, Pratt A B, Lutolf M P, et al. Protein delivery from materials formed by self-selectiveconjugate addition reactions. Journal ofControlled Release, 2001, 76(1): 11―25

doi: 10.1016/S0168-3659(01)00398-4
Wetering P, Metters A T, Schoenmakers R G, et al. Poly(ethylene glycol) hydrogelsformed by conjugate addition with controllable swelling, degradation,and release of pharmaceutically active proteins. Journal of Controlled Release, 2005, 102(3): 619―627

doi: 10.1016/j.jconrel.2004.10.029
Mironov V, Kasyanov V, Shu X Z, et al. Fabrication of tubular tissue constructs bycentrifugal casting of cells suspended in an in situ crosslinkable hyaluronan-gelatin hydrogel. Biomaterials, 2005, 26(36): 7628―7635

doi: 10.1016/j.biomaterials.2005.05.061
Shu X Z, Liu Y C, Palumbo F S, et al. In situ crosslinkablehyaluronan hydrogels for tissue engineering. Biomaterials, 2004, 25(7―8): 1339―1348
Cai S S, Liu Y C, Shu X Z, et al. Injectable glycosaminoglycan hydrogels for controlledrelease of human basic fibroblast growth factor. Biomaterials, 2005, 26(30): 6054―6067

doi: 10.1016/j.biomaterials.2005.03.012
Kim G-W, Choi Y-J, Kim M-S, et al. Synthesis and evaluation of hyaluronic acid― poly(ethylene oxide) hydrogel via Michael-type addition reaction. Current Applied Physics, 2007, 7(Supplement 1): e28―e32

doi: 10.1016/j.cap.2006.11.009
Lutolf M P, Tirelli N, Cerritelli S, et al. Systematic modulation of Michael-type reactivityof thiols through the use of charged amino acids. Bioconjugate Chemistry, 2001, 12(6): 1051―1056

doi: 10.1021/bc015519e
Huang L, Allen E, Tonelli A E. Study of the inclusion compounds formed between α-cyclodextrinand high molecular weight poly(ethylene oxide) and poly(ϵ-caprolactone). Polymer, 1998, 39(20): 4857―4865

doi: 10.1016/S0032-3861(97)00568-5
[1] Wanyu ZHAO, Jian LI, Bingbing FAN, Gang SHAO, Hailong WANG, Bozhen SONG, Shengnan WEI, Rui ZHANG. Microwave synthesis of chain-like zircona nanofibers through carbon-induced self-assembly growth[J]. Front. Mater. Sci., 2017, 11(4): 353-357.
[2] Lulu WEI, Beibei LU, Lei LI, Jianning WU, Zhiyong LIU, Xuhong GUO. One-step synthesis and self-assembly behavior of thermo-responsive star-shaped β-cyclodextrin--(P(MEO 2MA-co-PEGMA))21 copolymers[J]. Front. Mater. Sci., 2017, 11(3): 223-232.
[3] Junbo LI,Jianlong ZHAO,Wenlan WU,Ju LIANG,Jinwu GUO,Huiyun ZHOU,Lijuan LIANG. Temperature and anion responsive self-assembly of ionic liquid block copolymers coating gold nanoparticles[J]. Front. Mater. Sci., 2016, 10(2): 178-186.
[4] Yi ZHANG,Cencen ZHANG,Lijie LIU,David L. KAPLAN,Hesun ZHU,Qiang LU. Hierarchical charge distribution controls self-assembly process of silk in vitro[J]. Front. Mater. Sci., 2015, 9(4): 382-391.
[5] Ju LIANG,Wenlan WU,Junbo LI,Chen HAN,Shijie ZHANG,Jinwu GUO,Huiyun ZHOU. Synthesis and self-assembly of temperature and anion double responsive ionic liquid block copolymers[J]. Front. Mater. Sci., 2015, 9(3): 254-263.
[6] Yiyang LIN, Chuanbin MAO. Bio-inspired supramolecular self-assembly towards soft nanomaterials[J]. Front Mater Sci, 2011, 5(3): 247-265.
[7] Qian-Feng XU, Jian-Nong WANG, . Superhydrophobic and transparent coatings prepared by self-assembly of dual-sized silica particles[J]. Front. Mater. Sci., 2010, 4(2): 180-188.
[8] Sheng LU, P. CHEN. Constructing biomaterials using self-assembling peptide building blocks[J]. Front. Mater. Sci., 2010, 4(2): 145-151.
[9] MAO Xiao-bo, YANG Yan-lian, LEI Sheng-bin, WANG Chen, MA Zhun, HUANG Wei. Self-assembly of truxene derivatives investigated by STM[J]. Front. Mater. Sci., 2008, 2(1): 26-30.
[10] XU Li, HU Kun, JIAO Yanpeng, CUI Fuzhai, AI Hongbin. Surface modification of poly-L-lactic acid films by electrostatic self-assembly to promote vascular smooth muscle cells growth[J]. Front. Mater. Sci., 2007, 1(4): 388-394.
[11] XIE Zhiguo, HOU Dandan, YE Lin, ZHANG Aiying, FENG Zengguo. Enzyme-catalyzed preparation of supramolecular structured hydrogel of polypseudorotaxanes derived from the self-assembly of α-CDs with 3-arm p-hydroxyphenylpropionate terminated PEG[J]. Front. Mater. Sci., 2007, 1(4): 395-400.
[12] TIAN Zhen, WANG Meng, ZHANG Aiying, FENG Zengguo. Study on synthesis of glycopeptide-based triblock copolymers and their aggregation behavior in water[J]. Front. Mater. Sci., 2007, 1(2): 162-167.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed