Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2010, Vol. 4 Issue (1) : 1-16    https://doi.org/10.1007/s11706-010-0011-6
Research articles
A review of crystallographic textures in chemical vapor-deposited diamond films
Tao LIU1,Dierk RAABE1,Wei-Min MAO2,
1.Max-Planck-Institut für Eisenforschung, Abteilung Mikrostrukturphysik und Umformtechnik, Max-Planck-Strasse 1, Düsseldorf 40237, Germany; 2.School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China;
 Download: PDF(1159 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Diamond is one of the most important functional materials for film applications due to its extreme physical and mechanical properties, many of which depend on the crystallographic texture. The influence of various deposition parameters matters to the texture formation and evolution during chemical vapor deposition (CVD) of diamond films. In this overview, the texture evolutions are presented in terms of both simulations and experimental observations. The crystallographic textures in diamond are simulated based on the van der Drift growth selection mechanism. The film morphology and textures associated with the growth parameters α (proportional to the ratio of the growth rate along the〈100〉direction to that along the 〈111〉direction) are presented and determined by applying the fastest growth directions. Thick films with variations in substrate temperature, methane concentration, film thickness, and nitrogen addition were analyzed using high-resolution electron back-scattering diffraction (HR-EBSD) as well as X-ray diffraction (XRD), and the fraction variations of fiber textures with these deposition parameters were explained. In conjunction with the focused ion beam (FIB) technique for specimen preparation, the grain orientations in the beginning nucleation zones were studied using HR-EBSD (50nm step size) in another two sets of thin films deposited with variations in methane concentration and substrate material. The microstructures, textures, and grain boundary character were characterized. Based on the combination of an FIB unit for serial sectioning and HR-EBSD, diamond growth dynamics was observed using a 3D EBSD technique, with which individual diamond grains were investigated in 3D. Microscopic defects were observed in the vicinity of the high-angle grain boundaries by using the transmission electron microscopy (TEM) technique, and the advances of TEM orientation microscopy make it possible to identify the grain orientations in nano-crystalline diamond.
Keywords CVD diamond films      deposition parameters      texture      EBSD      van der Drift growth selection mechanism      
Issue Date: 05 March 2010
 Cite this article:   
Tao LIU,Dierk RAABE,Wei-Min MAO. A review of crystallographic textures in chemical vapor-deposited diamond films[J]. Front. Mater. Sci., 2010, 4(1): 1-16.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-010-0011-6
https://academic.hep.com.cn/foms/EN/Y2010/V4/I1/1
Prelas M A, Popovici G, Bigelow L K. Handbook of Industrial Diamonds and Diamond Films. New York: Marcel Dekker Press, 1998
Clausing R E, Horton L L, Angus J C, et al. Diamond and Diamond-like Films and Coatings. New York: Plenum Press, 1991
Govindaraju N, Aleksov A, Li X, et al. Comparative study of textured diamond filmsby thermal conductivity measurements. AppliedPhysics A: Material Science and Process, 2006, 85(3): 331―335

doi: 10.1007/s00339-006-3697-7
McCurdy A K. Phonon conduction in elastically anisotropic cubic crystals. Physical Review B, 1982, 26(12): 6971―6986

doi: 10.1103/PhysRevB.26.6971
McCurdy A K, Maris H J, Elbaum C. Anisotropic heat conduction in cubic crystals in theboundary scattering regime. Physical ReviewB, 1970, 2(10): 4077―4083

doi: 10.1103/PhysRevB.2.4077
Su Q F, Xia Y B, Wang L J, et al. Influence of texture on optical and electricalproperties of diamond films. Vacuum, 2007, 81(5): 644―648

doi: 10.1016/j.vacuum.2006.09.005
Banaszak A, Fabisiak K, Kaczmarski M, et al. Paramagnetic defects in diamond films synthesizedby the hot filament chemical vapour deposition. Crystal Research and Technology, 2006, 41(6): 535―540

doi: 10.1002/crat.200510621
Avigal Y, Glozman O, Etsion I, et al. [100]-Textured diamond films for tribologicalapplications. Diamond and Related Materials, 1997, 6(2): 381―385

doi: 10.1016/S0925-9635(96)00625-5
Goudeau P, Vandenbulcke L, Met C, et al. X-ray diffraction analysis of residual stressesin smooth fined-grain diamond coatings deposited on TA6V alloys. Surface and Coatings Technology, 2005, 200(1―4): 170―173

doi: 10.1016/j.surfcoat.2005.02.082
Schade A, Rosiwal S M, Singer R F. Tribological behaviour of<100>and<111>fibre texturedCVD diamond films under dry planar sliding contact. Diamond and Related Materials, 2006, 15(10): 1682―1688

doi: 10.1016/j.diamond.2006.02.008
Himpsel F J, Knapp J A, Van Vechten J A, et al. Quantum photoyield of diamond(Ш)— A stable negative-affinity emitter. Physical Review B, 1979, 20(2): 624―627

doi: 10.1103/PhysRevB.20.624
van der Drift A. Evolutionaryselection: a principle governing growth orientation in vapour depositedlayers. Philips Research Reports, 1967, 22: 267―288
Wild Ch, Herres N, Koidl P. Texture formation in polycrystalline diamond films. Journal of Applied Physics, 1990, 68(3): 973―978

doi: 10.1063/1.346663
Smereka P, Li X Q, Russo G, et al. Simulation of faceted film growth in three dimensions:microstructure, morphology and texture. Acta Materialia, 2005, 53(4): 1191―1204

doi: 10.1016/j.actamat.2004.11.013
Mao W, Zhu H, Chen L, et al. Grain orientation dependence on distance tosurface of CVD diamond film. Materialsand Science Technology, 2005, 21(12): 1383―1386

doi: 10.1179/174328405X71567
Delclos S, Dorignac D, Phillipp F, et al. UHREM investigation of stacking fault interactionsin the CVD diamond structure. Diamond andRelated Materials, 1999, 8(2―5): 682―687

doi: 10.1016/S0925-9635(98)00255-6
Yin L W, Li M S, Cui J J, et al. Planar?defects?and?dislocations?in?HPHT?as-grown?diamond?crystals. Diamond and Related Materials, 2002, 11(2): 268―272

doi: 10.1016/S0925-9635(01)00690-2
Liu T, Raabe D, Mao W, et al. Microtexture and grain boundaries in freestandingCVD diamond films: Growth and twinning mechanisms. Advanced Functional Materials, 2009, 19(24): 3880―3891

doi: 10.1002/adfm.200901231
Liu T, Raabe D, Zaefferer S. A 3D tomographic EBSD analysis of a CVD diamond thinfilm. Science and Technology of AdvancedMaterials, 2008, 9: 035013 (6 pages)
Liu T, Raabe D. Influence of nitrogen dopingon growth rate and texture evolution of chemical vapor depositiondiamond films. Applied Physics Letters, 2009, 94(2): 021119 (3 pages)
Chen H W, Rudolph V. The 3-D structure of polycrystallinediamond film by electron backscattering diffraction (EBSD). Diamond and Related Materials, 2003, 12(10―11): 1633―1639

doi: 10.1016/S0925-9635(03)00187-0
Wild C, Koildl P, Muller-Sebert W, et al. Chemical vapour deposition andcharacterization of smooth {100}-faceted diamond films. Diamond and Related Materials, 1993, 2(2―4): 158―168

doi: 10.1016/0925-9635(93)90047-6
May P W. CVD diamond — a new technology for the future. Endeavour Magazine, 1995, 19(3): 101―106

doi: 10.1016/0160-9327(95)97494-S
Busch J V, Dismukes J P. Trends and market perspectivesfor CVD diamond. Diamond and Related Materials, 1994, 3(4―6): 295―302

doi: 10.1016/0925-9635(94)90175-9
Kobashi K. DiamondFilms. Amsterdam: Elsevier, 2005
Lu F X, Tang W Z, Huang T B, et al. Large area high quality diamond film depositionby high power DC arc plasma jet operating at gas recycling mode. Diamond Related Materials, 2001, 10(9―10): 1551―1558

doi: 10.1016/S0925-9635(01)00407-1
Zaefferer S, Wright S I, Raabe D. Three-dimensional orientation microscopy in a focusedion beam-scanning electron microscope: a new dimension of microstructurecharacterization. Metallurgical and MaterialsTransactions A, 2008, 39(2): 374―389

doi: 10.1007/s11661-007-9418-9
Konrad J, Zaefferer S, Raabe D. Investigation of orientation gradients around a hardLaves particle in a warm-rolled Fe3Al-based alloy using a 3D EBSD-FIBtechnique. Acta Materialia, 2006, 54(5): 1369―1380

doi: 10.1016/j.actamat.2005.11.015
Schmidt I, Benndorf C. Low temperature CVD diamonddeposition using halogenated precursors — deposition on lowmelting materials: Al, Zn and glass. Diamondand Related Materials, 2001, 10(3―7): 347―351
Kobashi K, Miyauchi S, Nishimura K, et al. Method for forming diamond films by vapor phasesynthesis. US Patent, 5358754, 1994
Zhu H X, Mao W M, Feng H P. Influence of methane concentration on crystal growingprocess in CVD free standing diamond films. Journal of Inorganic Materials, 2007, 22(3): 570―576 (in Chinese)
Williams B E, Kong H S, Glass J T. Electron microscopy of vapor phase deposited diamond. Journal of Materials Research, 1990, 5(4): 801―810

doi: 10.1557/JMR.1990.0801
Yan C S, Yogesh K, Vohra M N. Multiple twinning and nitrogen defect center in chemicalvapor deposited homoepitaxial diamond. Diamond and Related Materials, 1999, 8(11): 2022―2031

doi: 10.1016/S0925-9635(99)00148-X
Chu C J, Hauge R H, Margrave J L, et al. Mechanism of diamond growth by chemical vapordeposition on diamond (100), (111), and (110) surfaces: Carbon-13studies. Applied Physics Letters, 1992, 61(12): 1393―1395

doi: 10.1063/1.107548
Tang C J, Neves A J, Fernandes A H S. Influence of nucleation density on filmquality, growth rate and morphology of thick CVD diamond films. Diamond and Related Materials, 2003, 12(9): 1488―1494

doi: 10.1016/S0925-9635(03)00179-1
Clausing R E, Heatherly L, Horton L L, et al. Textures and morphologies of chemical vapordeposited (CVD) diamond. Diamond and RelatedMaterials, 1992, 1(5―6): 411―415

doi: 10.1016/0925-9635(92)90139-F
Meakin D, Stoemenos J, Miglierate D, et al. Structural studies of low-temperature low-pressurechemical deposited polycrystalline silicon. Journal of Applied Physics, 1987, 61(11): 5031―5037

doi: 10.1063/1.338325
Volmer M, Weber A. Nucleation of supersaturatedstructures. Zeitschrift für PhysikalischeChemie, 1926, 119: 277―301 (in German)
Steeds J W, Gilmore A, Bussmann K M, et al. On the nature of grain boundary defects in highquality CVD diamond films and their influence on physical properties. Diamond and Related Materials, 1999, 8(6): 996―1005

doi: 10.1016/S0925-9635(98)00425-7
Wu G, Zaefferer S. Advances in TEM orientationmicroscopy by combination of dark-field conical scanning and improvedimage matching. Ultramicroscopy, 2009, 109(11): 1317―1325

doi: 10.1016/j.ultramic.2009.06.002
Raabe D. Cellularautomata in materials science with particular reference to recrystallizationsimulation. Annual Review of MaterialsResearch, 2002, 32: 53―76

doi: 10.1146/annurev.matsci.32.090601.152855
[1] Weimin MAO. The currently predominant Taylor principles should be disregarded in the study of plastic deformation of metals[J]. Front. Mater. Sci., 2018, 12(3): 322-326.
[2] Weimin MAO. On the Taylor principles for plastic deformation of polycrystalline metals[J]. Front. Mater. Sci., 2016, 10(4): 335-345.
[3] NI Jie, LI Zheng-cao, ZHANG Zheng-jun. Influence of deposition temperature on the structure and optical properties of HfO thin films[J]. Front. Mater. Sci., 2008, 2(4): 381-385.
[4] LIU Dan-min, HAO Fei, ZHANG Jiu-xing, HU Yan-cao, ZHOU Mei-ling. Investigation of cube-textured Ni-7at.%W alloy substrates for YBaCuO coated superconductors[J]. Front. Mater. Sci., 2008, 2(3): 295-300.
[5] YANG Ping. Dependency of deformation twinning on grain orientation in an FCC and a HCP metal[J]. Front. Mater. Sci., 2007, 1(4): 331-341.
[6] MAO Weimin. On-line r value determination of deep drawing steel sheet[J]. Front. Mater. Sci., 2007, 1(4): 346-350.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed