Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2010, Vol. 4 Issue (1) : 45-51    https://doi.org/10.1007/s11706-010-0014-3
Research articles
Properties, synthesis, and characterization of graphene
Liang-Xu DONG,Qiang CHEN,
Laboratory of Plasma Physics and Materials, Beijing Institute of Graphic Communication, Beijing 102600, China;
 Download: PDF(273 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Graphene is a wonder material that attracts great interests in materials science and condensed matter physics. It is the thinnest material and also the strongest material ever measured. Its distinctive band structure and physical properties determine its bright application prospects. This review introduces briefly the properties and applications of graphene. Recent synthesis and characteri-zation methods are summarized in detail, and the future research direction is also pointed out in this paper.
Keywords graphene      properties      synthesis      characterization      
Issue Date: 05 March 2010
 Cite this article:   
Liang-Xu DONG,Qiang CHEN. Properties, synthesis, and characterization of graphene[J]. Front. Mater. Sci., 2010, 4(1): 45-51.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-010-0014-3
https://academic.hep.com.cn/foms/EN/Y2010/V4/I1/45
Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbonfilms. Science, 2004, 306: 666―669

doi: 10.1126/science.1102896
Geim A K, Novoselov K S. The rise of graphene. Nature Materials, 2007, 6(3): 183―191

doi: 10.1038/nmat1849
Chae H K, Siberio-Pérez D Y, Kim J, et al. A route to high surface area,porosity and inclusion of large molecules in crystals. Nature, 2004, 427(6974): 523―527

doi: 10.1038/nature02311
Schadler L S, Giannaris S C, Ajayan P M. Load transfer in carbon nanotube epoxy composites. Applied Physics Letters, 1998, 73(26): 3842―3484

doi: 10.1063/1.122911
Ponomarenko L A, Schedin F, Katsnelson M I, et al. Chaotic Dirac billiard in graphene quantum dots. Science, 2008, 320: 356―358

doi: 10.1126/science.1154663
Campos L C, Manfrinato V R, Sanchez-Yamagishi J D. Anisotropic etching and nanoribbon formationin single-layer graphene. Nano Letters, 2009, 9(7): 2600―2604

doi: 10.1021/nl900811r
nanotechweb.org/cws/article/tech/33625
Wu J, Becerril H A, Bao Z, et al. Organic solar cells with solution-processedgraphene transparent electrodes. AppliedPhysics Letters, 2008, 92(26): 263302 (3 pages)
Schedin F, Geim A K, Morozov S V, et al. Detection of individual gas molecules adsorbedon grapheme. Nature Materials, 2007, 6(9): 652―655

doi: 10.1038/nmat1967
Mohanty N, Berry V. Graphene-based single-bacteriumresolution biodevice and DNA transistor: Interfacing graphene derivativeswith nanoscale and microscale biocomponents. Nano Letters, 2008, 8(12): 4469―4476

doi: 10.1021/nl802412n
Geim A K. Graphene: status and prospects. Science, 2009, 324: 1530―1534

doi: 10.1126/science.1158877
Tung V C, Allen M J, Yang Y, et al. High-throughput solution processing of large-scalegraphene. Nature Nanotechnology, 2009, 4(1): 25―29

doi: 10.1038/nnano.2008.329
Berger C. Ultrathinepitaxial graphite: 2D electron gas properties and a route towardgraphene-based nanoelectronics. The Journalof Physical Chemistry B, 2004, 108(52): 19912―19916

doi: 10.1021/jp040650f
Berger C, Song Z M, Li X B, et al. Electronic confinement and coherence in patternedepitaxial graphene. Science, 2006, 312: 1191―1196

doi: 10.1126/science.1125925
Jernigan G G, VanMil B L, Tedesco J L, et al. Comparison of epitaxial graphene on Si-faceand C-face 4H SiC formed by ultrahigh vacuum and RF furnace production. Nano Letters, 2009, 9(7): 2605―2609

doi: 10.1021/nl900803z
Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene filmsfor stretchable transparent electrodes. Nature, 2009, 457(7230): 706―710

doi: 10.1038/nature07719
Reina A, Jia X T, Ho J, et al. Large area, few-layer graphene films on arbitrarysubstrates by chemical vapor deposition. Nano Letters, 2009, 9(1): 30―35

doi: 10.1021/nl801827v
Li X S, Cai W W, An J, et al. Graphene films on copper foils large-area synthesisof high-quality and uniform. Science, 2009, 324: 1312―1314

doi: 10.1126/science.1171245
Reina A, Son H B, Jiao L Y, et al. Transferring and identification of single- andfew-lay graphene on arbitrary substrates. The Journal of Physical Chemistry C, 2008, 112(46): 17741―17744

doi: 10.1021/jp807380s
Bekyarova E, Itkis M E, Ramesh P, et al. Chemical modification of epitaxial graphene:spontaneous grafting of aryl groups. Journalof the American Chemical Society, 2009, 131(4): 1336―1337

doi: 10.1021/ja8057327
Elias D C, Nair R R, Mohiuddin T M G, et al. Control of graphene’s properties by reversiblehydrogenation: evidence for graphane. Science, 2009, 323: 610―613

doi: 10.1126/science.1167130
Wei D C, Liu Y Q, Wang Y, et al. Synthesis of N-doped graphene by chemical vapordeposition and its electrical properties. Nano Letters, 2009, 9(5): 1752―1758

doi: 10.1021/nl803279t
Gao L B, Ren W C, Li F, et al. Total color difference for rapid and accurateidentification of grapheme. ACS Nano, 2008, 2(8): 1625―1633

doi: 10.1021/nn800307s
Ni Z H, Wang H M, Kasim J, et al. Graphene thickness determination using reflectionand contrast spectroscopy. Nano Letters, 2007, 7(9): 2758―2763

doi: 10.1021/nl071254m
Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United Statesof America, 2005, 102: 10451―10453

doi: 10.1073/pnas.0502848102
Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene and graphene layers. Physical Review Letters, 2006, 97(18): 187401 (4 pages)
Wang Y Y, Ni Z H, Yu T, et al. Raman studies of monolayer graphene: The substrateeffect. The Journal of Physical ChemistryC, 2008, 112(29): 10637―10640

doi: 10.1021/jp8008404
Gupta A, Chen G, Joshi P, et al. Raman scattering from high-frequency phononsin supported n-graphene layer films. NanoLetters, 2006, 6(12): 2667―2673

doi: 10.1021/nl061420a
Thomsen C, Reich S. Double resonant Raman scatteringin graphite. Physical Review Letters, 2000, 85(24): 5214―5217

doi: 10.1103/PhysRevLett.85.5214
[1] Shalmali BASU, Kamalika SEN. A review on graphene-based materials as versatile cancer biomarker sensors[J]. Front. Mater. Sci., 2020, 14(4): 353-372.
[2] Zhenxiao LU, Wenxian WANG, Jun ZHOU, Zhongchao BAI. FeS2@C nanorods embedded in three-dimensional graphene as high-performance anode for sodium-ion batteries[J]. Front. Mater. Sci., 2020, 14(3): 255-265.
[3] Kun YANG, Jinghuan TIAN, Wei QU, Bo LUAN, Ke LIU, Jun LIU, Likui WANG, Junhui JI, Wei ZHANG. Host-mediated biofilm forming promotes post-graphene pathogen expansion via graphene micron-sheet[J]. Front. Mater. Sci., 2020, 14(2): 221-231.
[4] Huan-Yan XU, Dan LU, Xu HAN. Graphene-induced enhanced anticorrosion performance of waterborne epoxy resin coating[J]. Front. Mater. Sci., 2020, 14(2): 211-220.
[5] Jinxing ZHANG, Kexing HU, Qi OUYANG, Qilin GUI, Xiaonong CHEN. One-step functionalization of graphene via Diels--Alder reaction for improvement of dispersibility[J]. Front. Mater. Sci., 2020, 14(2): 198-210.
[6] Xin LIU, Xiangling REN, Longfei TAN, Wenna GUO, Zhongbing HUANG, Xianwei MENG. Preparation and enhanced properties of ZrMOF@CdTe nanoparticles with high-density quantum dots[J]. Front. Mater. Sci., 2020, 14(2): 155-162.
[7] Mengke PENG, Fenyan HU, Minting DU, Bingjie MAI, Shurong ZHENG, Peng LIU, Changhao WANG, Yashao CHEN. Hydrothermal growth of hydroxyapatite and ZnO bilayered nanoarrays on magnesium alloy surface with antibacterial activities[J]. Front. Mater. Sci., 2020, 14(1): 14-23.
[8] Wei SUN, Rui ZHAO, Tian WANG, Ke ZHAN, Zheng YANG, Bin ZHAO, Ya YAN. An approach to prepare uniform graphene oxide/aluminum composite powders by simple electrostatic interaction in water/alcohol solution[J]. Front. Mater. Sci., 2019, 13(4): 375-381.
[9] Xia HE, Qingchun LIU, Jiajun WANG, Huiling CHEN. Wearable gas/strain sensors based on reduced graphene oxide/linen fabrics[J]. Front. Mater. Sci., 2019, 13(3): 305-313.
[10] Ram Sevak SINGH, Anurag GAUTAM, Varun RAI. Graphene-based bipolar plates for polymer electrolyte membrane fuel cells[J]. Front. Mater. Sci., 2019, 13(3): 217-241.
[11] Pengzhang LI, Chuanjin TIAN, Wei YANG, Wenyan ZHAO, Zhe LÜ. LaNiO3 modified with Ag nanoparticles as an efficient bifunctional electrocatalyst for rechargeable zinc--air batteries[J]. Front. Mater. Sci., 2019, 13(3): 277-287.
[12] Chaoyuan LIU, Zhongbing HUANG, Ximing PU, Lei SHANG, Guangfu YIN, Xianchun CHEN, Shuang CHENG. Fabrication of carboxylic graphene oxide-composited polypyrrole film for neurite growth under electrical stimulation[J]. Front. Mater. Sci., 2019, 13(3): 258-269.
[13] Yuqiao CHENG, Yang YANG, Chunrong NIU, Zhe FENG, Wenhui ZHAO, Shuang LU. Progress in synthesis and application of zwitterionic Gemini surfactants[J]. Front. Mater. Sci., 2019, 13(3): 242-257.
[14] Bin CAI, Changxiang SHAO, Liangti QU, Yuning MENG, Lin JIN. Preparation of sulfur-doped graphene fibers and their application in flexible fibriform micro-supercapacitors[J]. Front. Mater. Sci., 2019, 13(2): 145-155.
[15] Ruiping LIU, Ning ZHANG, Xinyu WANG, Chenhui YANG, Hui CHENG, Hanqing ZHAO. SnO2 nanoparticles anchored on graphene oxide as advanced anode materials for high-performance lithium-ion batteries[J]. Front. Mater. Sci., 2019, 13(2): 186-192.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed