Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2010, Vol. 4 Issue (2) : 111-115    https://doi.org/10.1007/s11706-010-0024-1
Research articles
A review on magnesium alloys as biodegradable materials
Xue-Nan GU,Yu-Feng ZHENG,
Department of Advanced Materials and Nanotechnology, College of Engineering, Peking University, Beijing 100871, China;
 Download: PDF(93 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Magnesium alloys attracted great attention as a new kind of degradable biomaterials. One research direction of biomedical magnesium alloys is based on the industrial magnesium alloys system, and another is the self-designed biomedical magnesium alloys from the viewpoint of biomaterials. The mechanical, biocorrosion properties and biocompatibilities of currently reported Mg alloys were summarized in the present paper, with the mechanical properties of bone tissue, the healing period postsurgery, the pathophysiology and toxicology of the alloying elements being discussed. The strategy in the future development of biomedical Mg alloys was proposed.
Keywords biomaterials      magnesium alloys      degradation      corrosion      
Issue Date: 05 June 2010
 Cite this article:   
Xue-Nan GU,Yu-Feng ZHENG. A review on magnesium alloys as biodegradable materials[J]. Front. Mater. Sci., 2010, 4(2): 111-115.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-010-0024-1
https://academic.hep.com.cn/foms/EN/Y2010/V4/I2/111
Staiger M P, Pietak A M, Huadmai J, et al. Magnesium and itsalloys as orthopedic biomaterials: a review. Biomaterials, 2006, 27(9): 1728–1734

doi: 10.1016/j.biomaterials.2005.10.003
Saris N E L. Magnesium: an update on physiological, clinical and analyticalaspects. Clinica Chimica Acta, 2000, 294(1–2): 1–26

doi: 10.1016/S0009-8981(99)00258-2
El-Rahman S S. Neuropathology of aluminum toxicity in rats (glutamateand GABA impairment). Pharmacological Research, 2003, 47(3): 189–194

doi: 10.1016/S1043-6618(02)00336-5
Hirano S, Suzuki K T. Exposure, metabolism, and toxicity of rare earths and related compounds. Environmental Health Perspectives, 1996, 104(Suppl 1): 85–95

doi: 10.2307/3432699
Witte F, Hort N, Vogt C, et al. Degradable biomaterials basedon magnesium corrosion. Current Opinion in Solid State and Materials Science, 2008, 12(5–6): 63–72

doi: 10.1016/j.cossms.2009.04.001
www.magnesium-elektron.com
Gu X, Zheng Y, Cheng Y, et al. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials, 2009, 30(4): 484–498

doi: 10.1016/j.biomaterials.2008.10.021
Xu L, Yu G, Zhang E, et al. In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application. Journal of Biomedical Materials Research PartA, 2007, 83A(3): 703–711

doi: 10.1002/jbm.a.31273
Li Z, Gu X, Lou S, et al. The development of binary Mg-Caalloys for use as biodegradable materials within bone. Biomaterials, 2008, 29(10): 1329–1344

doi: 10.1016/j.biomaterials.2007.12.021
Zhang S, Zhang X, Zhao C, et al. Research on an Mg-Zn alloy asa degradable biomaterial. Acta Biomaterialia, 2010, 6(2): 626–640

doi: 10.1016/j.actbio.2009.06.028
Ruedi T P, Murphy W M. AO Principle of Fracture Management. Thieme Medical Publishers, 2001
Wang H, Estrin Y, Zúberová Z. Bio-corrosion of a magnesium alloy with different processinghistories. Materials Letters, 2008, 62(16): 2476–2479

doi: 10.1016/j.matlet.2007.12.052
Zartner P, Cesnjevar R, Singer H, et al. First successfulimplantation of a biodegradable metal stent into the left pulmonaryartery of a preterm baby. Catheterization and Cardiovascular Interventions, 2005, 66(4): 590–594

doi: 10.1002/ccd.20520
Erbel R, Di Mario C, Bartunek J, et al. Temporary scaffolding of coronary arterieswith bioabsorbable magnesium stents: a prospective, non-randomisedmulticentre trial. The Lancet, 2007, 369(9576): 1869–1875

doi: 10.1016/S0140-6736(07)60853-8
Witte F, Fischer J, Nellesen J, et al. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials, 2006, 27(7): 1013–1018

doi: 10.1016/j.biomaterials.2005.07.037
Witte F, Kaese V, Haferkamp H, et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials, 2005, 26(17): 3557–3563

doi: 10.1016/j.biomaterials.2004.09.049
Zeng R-C, Chen J, Dietzel W, et al. Electrochemical behavior ofmagnesium alloys in simulated body fluids. Transactions of Nonferrous Metals Society of China, 2007, 17: s166–s170
Yao Z, Li L, Jiang Z. Adjustment of the ratio of Ca/P in theceramic coating on Mg alloy by plasma electrolytic oxidation. Applied Surface Science, 2009, 255(13–14): 6724–6728

doi: 10.1016/j.apsusc.2009.02.082
Kannan M B, Raman R K. In vitro degradation and mechanical integrityof calcium-containing magnesium alloys in modified-simulated bodyfluid. Biomateirals, 2008, 29(15): 2306–2314

doi: 10.1016/j.biomaterials.2008.02.003
Song G. Control of biodegradation of biocompatible magnesiumalloys. Corrosion Science, 2007, 49(4): 1696–1701

doi: 10.1016/j.corsci.2007.01.001
Xu L, Zhang E, Yin D, et al. In vitro corrosion behaviour of Mg alloys in a phosphate buffered solutionfor bone implant application. Journal of Materials Science: Materials in Medicine, 2008, 19(3): 1017–1025

doi: 10.1007/s10856-007-3219-y
Zhang E, Yin D, Xu L, et al. Microstructure, mechanical and corrosion propertiesand biocompatibility of Mg-Zn-Mn alloys for biomedical application. Materials Science and Engineering C, 2009, 29(3): 987–993

doi: 10.1016/j.msec.2008.08.024
Zhang E, He W, Du H, et al. Microstructure, mechanical and corrosion propertiesof Mg-Zn-Y alloys with low Zn content. Materials Science and Engineering A, 2008, 488(1–2): 102–111

doi: 10.1016/j.msea.2007.10.056
Sigel H. Metal Ions in Biological System. New York: Marcel Dekker Inc., 1986
Seiler H G, Sigel H. Handbook on Toxicity of Inorganic Compounds. New York: Marcel Dekker Inc., 1988
Emley E F. Principles of Magnesium Technology. Oxford: Pergamon Press, 1966
Li L, Gao J, Wang Y. Evaluation of cyto-toxicity and corrosionbehavior of alkali-heat-treated magnesium in simulated body fluid. Surface and Coatings Technology, 2004, 185(1): 92–98

doi: 10.1016/j.surfcoat.2004.01.004
Gu X N, Zheng W, Cheng Y, et al. A study on alkaline heat treatedMg-Ca alloy for the control of the biocorrosion rate. Acta Biomaterialia, 2009, 5(7): 2790–2799

doi: 10.1016/j.actbio.2009.01.048
Zhang X P, Zhao Z P, Wu F M, et al. Corrosion and wear resistanceof AZ91D magnesium alloy with and without microarc oxidation coatingin Hank’s solution. Journal of Materials Science, 2007, 42(20): 8523–8528

doi: 10.1007/s10853-007-1738-z
Xu L, Pan F, Yu G, et al. In vitro and in vivo evaluation of the surface bioactivityof a calcium phosphate coated magnesium alloy. Biomaterials, 2009, 30(8): 1512–1523

doi: 10.1016/j.biomaterials.2008.12.001
Wang H X, Guan S K, Wang X, et al. In vitro degradation and mechanical integrity of Mg-Zn-Ca alloy coated withCa-deficient hydroxyapatite by the pulse electrodeposition process. Acta Biomaterialia, 2009
Gu X N, Zheng Y F, Lan Q X, et al. Surface modification of Mg-1Caalloy to slow down its biocorrosion by chitosan. Biomedical Materials, 2009, 4(4): 044109

doi: 10.1088/1748-6041/4/4/044109
Gu X N, Zheng Y F, Zhong S P, et al. Corrosion of, and cellular responsesto Mg-Zn-Ca bulk metallic glasses. Biomaterials, 2010, 31(6): 1093–1103

doi: 10.1016/j.biomaterials.2009.11.015
Zberg B, Uggowitzer P J, Löffler J F. Mg-Zn-Ca glasses without clinically observable hydrogen evolution for biodegradable implants. Nature Materials, 2009, 8(11): 887–891

doi: 10.1038/nmat2542
[1] Xiang SUN, Qing-Song YAO, Yu-Chao LI, Fen ZHANG, Rong-Chang ZENG, Yu-Hong ZOU, Shuo-Qi LI. Biocorrosion resistance and biocompatibility of Mg--Al layered double hydroxide/poly(L-lactic acid) hybrid coating on magnesium alloy AZ31[J]. Front. Mater. Sci., 2020, 14(4): 426-441.
[2] Zheng-Zheng YIN, Wei HUANG, Xiang SONG, Qiang ZHANG, Rong-Chang ZENG. Self-catalytic degradation of iron-bearing chemical conversion coating on magnesium alloys ---- Influence of Fe content[J]. Front. Mater. Sci., 2020, 14(3): 296-313.
[3] Huan-Yan XU, Dan LU, Xu HAN. Graphene-induced enhanced anticorrosion performance of waterborne epoxy resin coating[J]. Front. Mater. Sci., 2020, 14(2): 211-220.
[4] Zhiyu ZHANG, Lixia HU, Hui ZHANG, Liping YU, Yunxiao LIANG. Large-sized nano-TiO2/SiO2 mesoporous nanofilm-constructed macroporous photocatalysts with excellent photocatalytic performance[J]. Front. Mater. Sci., 2020, 14(2): 163-176.
[5] Pengfei ZHU, Zhihao REN, Ruoxu WANG, Ming DUAN, Lisi XIE, Jing XU, Yujing TIAN. Preparation and visible photocatalytic dye degradation of Mn-TiO2/sepiolite photocatalysts[J]. Front. Mater. Sci., 2020, 14(1): 33-42.
[6] Zai-Meng QIU, Fen ZHANG, Jun-Tong CHU, Yu-Chao LI, Liang SONG. Corrosion resistance and hydrophobicity of myristic acid modified Mg--Al LDH/Mg(OH)2 steam coating on magnesium alloy AZ31[J]. Front. Mater. Sci., 2020, 14(1): 96-107.
[7] Mengke PENG, Fenyan HU, Minting DU, Bingjie MAI, Shurong ZHENG, Peng LIU, Changhao WANG, Yashao CHEN. Hydrothermal growth of hydroxyapatite and ZnO bilayered nanoarrays on magnesium alloy surface with antibacterial activities[J]. Front. Mater. Sci., 2020, 14(1): 14-23.
[8] Wei WU, Fen ZHANG, Yu-Chao LI, Yong-Feng ZHOU, Qing-Song YAO, Liang SONG, Rong-Chang ZENG, Sie Chin TJONG, Dong-Chu CHEN. Corrosion resistance of a silane/ceria modified Mg--Al-layered double hydroxide on AA5005 aluminum alloy[J]. Front. Mater. Sci., 2019, 13(4): 420-430.
[9] Xiao-Jing JI, Qiang CHENG, Jing WANG, Yan-Bin ZHAO, Zhuang-Zhuang HAN, Fen ZHANG, Shuo-Qi LI, Rong-Chang ZENG, Zhen-Lin WANG. Corrosion resistance and antibacterial effects of hydroxyapatite coating induced by polyacrylic acid and gentamicin sulfate on magnesium alloy[J]. Front. Mater. Sci., 2019, 13(1): 87-98.
[10] Vijaya KUMARI, Anuj MITTAL, Jitender JINDAL, Suprabha YADAV, Naveen KUMAR. S-, N- and C-doped ZnO as semiconductor photocatalysts: A review[J]. Front. Mater. Sci., 2019, 13(1): 1-22.
[11] Lian GUO, Fen ZHANG, Jun-Cai LU, Rong-Chang ZENG, Shuo-Qi LI, Liang SONG, Jian-Min ZENG. A comparison of corrosion inhibition of magnesium aluminum and zinc aluminum vanadate intercalated layered double hydroxides on magnesium alloys[J]. Front. Mater. Sci., 2018, 12(2): 198-206.
[12] Ling-Yu LI, Bin LIU, Rong-Chang ZENG, Shuo-Qi LI, Fen ZHANG, Yu-Hong ZOU, Hongwei (George) JIANG, Xiao-Bo CHEN, Shao-Kang GUAN, Qing-Yun LIU. In vitro corrosion of magnesium alloy AZ31 --- a synergetic influence of glucose and Tris[J]. Front. Mater. Sci., 2018, 12(2): 184-197.
[13] Madhulika SHARMA, Pranab Kishore MOHAPATRA, Dhirendra BAHADUR. Improved photocatalytic degradation of organic dye using Ag3PO4/MoS2 nanocomposite[J]. Front. Mater. Sci., 2017, 11(4): 366-374.
[14] Jun WU, Chentian SHI, Yupeng ZHANG, Qiang FU, Chunxu PAN. Photocatalytic mechanism of high-activity anatase TiO2 with exposed (001) facets from molecular-atomic scale: HRTEM and Raman studies[J]. Front. Mater. Sci., 2017, 11(4): 358-365.
[15] Lan-Yue CUI, Xiao-Ting LI, Rong-Chang ZENG, Shuo-Qi LI, En-Hou HAN, Liang SONG. In vitro corrosion of Mg--Ca alloy --- The influence of glucose content[J]. Front. Mater. Sci., 2017, 11(3): 284-295.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed