Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2010, Vol. 4 Issue (2) : 171-174    https://doi.org/10.1007/s11706-010-0031-2
Research articles
Design and characterization of bioceramic coating materials for Ti6Al4V
Qiang WEI1,Zhen-Duo CUI1,Xian-Jin YANG1,Lian-Yun ZHANG2,Jia-Yin DENG2,
1.Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; 2.School of Dentistry, Tianjin Medical University, Tianjin 300070, China;
 Download: PDF(409 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Novel bioceramics used as coating materials for Ti6Al4V were designed and characterized by adjusting the thermal expansion coefficient. The results show that the thermal expansion coefficient (α) of 6PM-B5-F4 coating is 10.1×10−6/°C, which matched that of Ti6Al4V. The bonding strength between the alloy and 6PM-B5-F4 coating was further measured by the longitudinal pull-off test. The in vitro response of the bioceramic was studied by immersing the specimens in simulated body fluid (SBF). The bioceramic morphology and structure were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transformed infrared spectroscopy (FTIR).
Keywords Ti6Al4V      bioceramic      bonding strength      thermal expansion coefficient      bioactivity      
Issue Date: 05 June 2010
 Cite this article:   
Jia-Yin DENG,Qiang WEI,Xian-Jin YANG, et al. Design and characterization of bioceramic coating materials for Ti6Al4V[J]. Front. Mater. Sci., 2010, 4(2): 171-174.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-010-0031-2
https://academic.hep.com.cn/foms/EN/Y2010/V4/I2/171
Verné E, Fernández Vallés C, Vitale Brovarone C, et al. Double-layer glass-ceramic coatings on Ti6Al4V for dental implants. Journal of the European Ceramic Society, 2004, 24(9): 2699–2705

doi: 10.1016/j.jeurceramsoc.2003.09.004
Wu C T, Ramaswamy Y, Gale D, et al. Novel sphene coatingson Ti-6Al-4V for orthopedic implants using sol-gel method. Acta Biomaterialia, 2008, 4(3): 569–576

doi: 10.1016/j.actbio.2007.11.005
Bloyer D R, Gomez-Vega J M, Saiz E, et al. Fabrication andcharacterization of a bioactive glass coating on titanium implantalloys. Acta Materialia, 1999, 47(15): 4221–4224

doi: 10.1016/S1359-6454(99)00280-3
Gomez-Vega J M, Saiz E, Tomsia A P. Glass-based coatings for titanium implant alloys. Journal of Biomedical MaterialsResearch, 1999, 46(4): 549–559

doi: 10.1002/(SICI)1097-4636(19990915)46:4<549::AID-JBM13>3.0.CO;2-M
Saiz E, Goldman M, Gomez-Vega J M, et al. In vitro behavior of silicate glass coatings on Ti6A14V. Biomaterials, 2002, 23(17): 3749–3756

doi: 10.1016/S0142-9612(02)00109-6
Shao G X, et al. Enamel, China light industry press, Beijing, China, 1983, 1–107
Ravaglioli A, Krajewski A, Biasini V, et al. Interface betweenhydroxyapatite and mandibular human bone tissue. Biomaterials, 1992, 13(3): 162–167

doi: 10.1016/0142-9612(92)90065-V
Lakstein D, Kopelovitch W, Barkay Z, et al. Enhanced osseointegrationof grit-blasted, NaOH-treated and electrochemically hydroxyapatite-coatedTi-6Al-4V implants in rabbits. Acta Biomaterialia, 2009, 5(6): 2258–2269

doi: 10.1016/j.actbio.2009.01.033
Kokubo T. Novel bioactive materials. Anales de Quimica, International Edition, 1997, 93: S49–S55
Gou Z R, Chang J, Zhai W. Preparation and characterization of novelbioactive dicalcium silicate ceramics. Journal of the European Ceramic Society, 2005, 25(9): 1507–1514

doi: 10.1016/j.jeurceramsoc.2004.05.029
Siriphannon P, Kameshima Y, Yasumori A, et al. Formation of hydroxyapatiteon CaSiO3 powders in simulated body fluid. Journal of the European Ceramic Society, 2002, 22(4): 511–520

doi: 10.1016/S0955-2219(01)00301-6
[1] Qin LI, Min XING, Lan CHANG, Linlin MA, Zhi CHEN, Jianrong QIU, Jianding YU, Jiang CHANG. Upconversion luminescence Ca--Mg--Si bioactive glasses synthesized using the containerless processing technique[J]. Front. Mater. Sci., 2019, 13(4): 399-409.
[2] Tao SONG,Zhi-Ye QIU,Fu-Zhai CUI. Biomaterials for reconstruction of cranial defects[J]. Front. Mater. Sci., 2015, 9(4): 346-354.
[3] Rong-Chang ZENG,Ke JIANG,Shuo-Qi LI,Fen ZHANG,Hong-Zhi CUI,En-Hou HAN. Mechanical and corrosion properties of Al/Ti film on magnesium alloy AZ31B[J]. Front. Mater. Sci., 2015, 9(1): 66-76.
[4] Ya-Wei DU,Li-Nan ZHANG,Zeng-Tao HOU,Xin YE,Hong-Sheng GU,Guo-Ping YAN,Peng SHANG. Physical modification of polyetheretherketone for orthopedic implants[J]. Front. Mater. Sci., 2014, 8(4): 313-324.
[5] WANG Lin, YU Bing, SUN Li-ping, REN Lei, ZHANG Qi-qing. Microsphere-integrated gelatin-siloxane hybrid scaffolds for bone tissue engineering: bioactivity & antibacterial activity[J]. Front. Mater. Sci., 2008, 2(2): 172-178.
[6] WU Qisheng, CHENG Futao, WEI Wuji. Study on the mechanical and biological property of PMMA bone cement modified with ultra-fine glass fibers and nano-hydroxyapatite[J]. Front. Mater. Sci., 2007, 1(3): 247-251.
[7] QI Yumin, CUI Chunxiang, LIU Shuangjin, WANG Huifen, HE Yun. Fabrication and biocompatibility in vitro of potassium titanate biological thin film/titanium alloy biological composite[J]. Front. Mater. Sci., 2007, 1(3): 252-257.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed