Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2010, Vol. 4 Issue (3) : 234-238    https://doi.org/10.1007/s11706-010-0088-y
Research articles
The coefficient of thermal expansion of biomimetic composites
Hai-Jun LEI,Bin LIU,Dai-Ning FANG,
AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China;
 Download: PDF(195 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The excellent mechanical properties of biocomposites has attracted a lot of research attention, and people have started attempting to fabricate biomimetic staggered composites. In this paper, the relationship between the equivalent coefficient of thermal expansion (CTE) and the microstructure of a biomimetic staggered composite is investigated. A shear-lag based thermalelastic analytical model is developed and is found to agree well with the finite element simulations. It is found that besides the volume fraction and the material constants of the constituent phases, the aspect ratio of the hard platelet plays an important role in the CTE of biocomposites. Hence, there are additional design parameters in staggered composites that can be used to adjust the CTE, which makes this type of composite promising in thermalelastic loading.
Keywords biomimetic composites      thermalelastic properties      microstructure      the equivalent CTE      
Issue Date: 05 September 2010
 Cite this article:   
Hai-Jun LEI,Bin LIU,Dai-Ning FANG. The coefficient of thermal expansion of biomimetic composites[J]. Front. Mater. Sci., 2010, 4(3): 234-238.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-010-0088-y
https://academic.hep.com.cn/foms/EN/Y2010/V4/I3/234
Guo H, Huang Y, Wang C A. Preparation and properties of fibrousmonolithic ceramics by in situ synthesizing. Journal of Materials Science, 1999, 34(10): 2455―2459

doi: 10.1023/A:1004527119256
Jackson A P, Vincent J F V, Turner R M. The mechanical design ofnacre. Proceedings of the Royal Society of London. Series B. Biological Sciences, 1988, 234(1277): 415―440

doi: 10.1098/rspb.1988.0056
Gao H. Application of fracture mechanics concepts to hierarchicalbiomechanics of bone and bone-like materials. International Journal of Fracture, 2006, 138(1―4): 101―137

doi: 10.1007/s10704-006-7156-4
Liu B, Zhang L, Gao H. Poisson ratio can play a crucial rolein mechanical properties of biocomposites. Mechanics of Materials, 2006, 38(12): 1128―1142

doi: 10.1016/j.mechmat.2006.02.002
Rho J-Y, Kuhn-Spearing L, Zioupos P. Mechanical properties andthe hierarchical structure of bone. MedicalEngineering & Physics, 1998, 20(2): 92―102

doi: 10.1016/S1350-4533(98)00007-1
Currey J D. Mechanical properties of mother of pearl in tension.Proceedings of the Royal Society of London. Series B, Biological Sciences, 1977, 196: 443―463

doi: 10.1098/rspb.1977.0050
Chen B, Wu P D, Gao H. A characteristic length for stress transferin the nanostructure of biological composites. Composites Science and Technology, 2009, 69(7―8): 1160―1164

doi: 10.1016/j.compscitech.2009.02.012
Kamat S, Su X, Ballarini R, et al. Structural basis for the fracturetoughness of the shell of the conch Strombusgigas. Nature, 2000, 405(6790): 1036―1040

doi: 10.1038/35016535
Smith B L, Schaffer T E, Viani M, et al. Molecular mechanisticorigin of the toughness of natural adhesive, fibres and composites. Nature, 1999, 399(6738): 761―763

doi: 10.1038/21607
Wang R Z, Suo Z, Evans A G, et al. Deformation mechanisms in nacre. Journal of Materials Research, 2001, 16(9): 2485―2493

doi: 10.1557/JMR.2001.0340
Okumura K, de Gennes P-G. Why is nacre strong? Elastic theory and fracture mechanics for biocompositeswith stratified structures. The EuropeanPhysical Journal E: Soft Matter and Biological Physics, 2001, 4(1): 121―127

doi: 10.1007/s101890170150
J?ger I, Fratzl P. Mineralizedcollagen fibrils: a mechanical model with a staggered arrangementof mineral particles. Biophysical Journal, 2000, 79(4): 1737―1746

doi: 10.1016/S0006-3495(00)76426-5
Ji B, Gao H. Mechanicalproperties of nanostructure of biological materials. Journal of the Mechanics and Physics of Solids, 2004, 52(9): 1963―1990

doi: 10.1016/j.jmps.2004.03.006
Nukala P K V V, Simunovic S. Statisticalphysics models for nacre fracture simulation. Physical Review E, 2005, 72(4): 041919 (9 pages)
Katti K S, Katti D R. Why is nacreso tough and strong? Materials Scienceand Engineering C, 2006, 26(8): 1317―1324

doi: 10.1016/j.msec.2005.08.013
[1] Chengzhi LUO, Guanghui LIU, Min ZHANG. Electric-field-induced microstructure modulation of carbon nanotubes for high-performance supercapacitors[J]. Front. Mater. Sci., 2019, 13(3): 270-276.
[2] Abdollah SABOORI, Matteo PAVESE, Claudio BADINI, Paolo FINO. Development of Al- and Cu-based nanocomposites reinforced by graphene nanoplatelets: Fabrication and characterization[J]. Front. Mater. Sci., 2017, 11(2): 171-181.
[3] Qianli HUANG,Ningmin HU,Xing YANG,Ranran ZHANG,Qingling FENG. Microstructure and inclusion of Ti–6Al–4V fabricated by selective laser melting[J]. Front. Mater. Sci., 2016, 10(4): 428-431.
[4] Rui GAO,Wen-jun GE,Shu MIAO,Tao ZHANG,Xian-ping WANG,Qian-feng FANG. Hot rolling and annealing effects on the microstructure and mechanical properties of ODS austenitic steel fabricated by electron beam selective melting[J]. Front. Mater. Sci., 2016, 10(1): 73-79.
[5] Qianli HUANG,Xujie LIU,Xing YANG,Ranran ZHANG,Zhijian SHEN,Qingling FENG. Specific heat treatment of selective laser melted Ti–6Al–4V for biomedical applications[J]. Front. Mater. Sci., 2015, 9(4): 373-381.
[6] Yongze CAO,Qiang WANG,Guojian LI,Yonghui MA,Jiaojiao DU,Jicheng HE. Effects of different magnetic flux densities on microstructure and magnetic properties of molecular-beam-vapor-deposited nanocrystalline Fe64Ni36 thin films[J]. Front. Mater. Sci., 2015, 9(2): 163-169.
[7] Masaaki TAKEZAWA,Hiroyuki TANEDA,Yuji MORIMOTO. Relationship between microstructure and magnetic domain structure of Nd--Fe--B melt-spun ribbon magnets[J]. Front. Mater. Sci., 2015, 9(2): 206-210.
[8] Peng-Cheng XIA,Feng-Wen CHEN,Kun XIE,Ling QIAO,Jin-Jiang YU. Influence of microstructures on thermal fatigue property of a nickel-base superalloy[J]. Front. Mater. Sci., 2015, 9(1): 85-92.
[9] Ya-Ming WANG,Jun-Wei GUO,Yun-Feng WU,Yan LIU,Jian-Yun CAO,Yu ZHOU,De-Chang JIA. Biocorrosion resistance of coated magnesium alloy by microarc oxidation in electrolyte containing zirconium and calcium salts[J]. Front. Mater. Sci., 2014, 8(3): 295-306.
[10] Zhen-Tao YU,Ming-Hua ZHANG,Yu-Xing TIAN,Jun CHENG,Xi-Qun MA,Han-Yuan LIU,Chang WANG. Designation and development of biomedical Ti alloys with finer biomechanical compatibility in long-term surgical implants[J]. Front. Mater. Sci., 2014, 8(3): 219-229.
[11] Zhi-Wen CHEN, Chan-Hung SHEK, C. M. Lawrence WU, Joseph K. L. LAI. Recent research situation in tin dioxide nanomaterials: synthesis, microstructures, and properties[J]. Front Mater Sci, 2013, 7(3): 203-226.
[12] Wei YAN, Wei WANG, Yi-Yin SHAN, Ke YANG. Microstructural stability of 9--12%Cr ferrite/martensite heat-resistant steels[J]. Front Mater Sci, 2013, 7(1): 1-27.
[13] Ping HU, Wei YAN, Wei WANG, Yi-yin SHAN, Ke YANG, Wei SHA, Zhan-li GUO, . Study on Laves phase in an advanced heat-resistant steel[J]. Front. Mater. Sci., 2009, 3(4): 434-441.
[14] Ning CAO, Zhen-yi FEI, Yong-xin QI, Wen-wen CHEN, Lu-lu SU, Qi WANG, Mu-sen LI, . Characterization and tribological application of diamond-like carbon (DLC) films prepared by radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) technique[J]. Front. Mater. Sci., 2009, 3(4): 409-414.
[15] He-sheng LI, Yong-xin QI, Yuan-pei ZHANG, Mu-sen LI. Fracture behavior of HPHT synthetic diamond with micrometers metallic inclusions[J]. Front Mater Sci Chin, 2009, 3(2): 218-223.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed