Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2010, Vol. 4 Issue (3) : 285-290    https://doi.org/10.1007/s11706-010-0094-0
Research articles
Synthesis of ultrafine ZrB 2 powders by sol-gel process
Li-Juan YANG,Shi-Zhen ZHU,Qiang XU,Zhen-Yu YAN,Ling LIU,
School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China;
 Download: PDF(536 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Ultrafine zirconium diboride (ZrB2) powders have been synthesized by sol-gel process using zirconium oxychloride (ZrOCl2·8H2O), boric acid (H3BO3) and phenolic resin as sources of zirconia, boron oxide and carbon, respectively. The effects of the reaction temperature, B/Zr ratio, holding time, and EtOH/H2O ratio on properties of the synthesized ZrB2 powders were investigated. It was revealed that ultrafine (average crystallite size between 100 and 400 nm) ZrB2 powders can be synthesized with the optimum processing parameters as follows: (i) the ratio of B/Zr is 4; (ii) the solvent is pure ethanol; (iii) the condition of carbothermal reduction heat treatment is at 1550°C for 20 min.
Keywords ultrafine ZrB2 powders      sol-gel method      synthesis      
Issue Date: 05 September 2010
 Cite this article:   
Ling LIU,Li-Juan YANG,Qiang XU, et al. Synthesis of ultrafine ZrB 2 powders by sol-gel process[J]. Front. Mater. Sci., 2010, 4(3): 285-290.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-010-0094-0
https://academic.hep.com.cn/foms/EN/Y2010/V4/I3/285
Fahrenholtz G, Hilmas G E, Talmy I G, et al. Refractory diboridesof zirconium and hafnium. Journal of the European Ceramic Society, 2007, 90(5): 1347–1364

doi: 10.1111/j.1551-2916.2007.01583.x
Monteverde F, Bellosi A, Scatteia L. Processing and propertiesof ultra-high temperature ceramics for space applications. Materials Science and Engineering A, 2008, 485(1―2): 415–421

doi: 10.1016/j.msea.2007.08.054
Chen L, Gu Y, Yang Z, et al. Preparation and some propertiesof nanocrystalline ZrB2 powders. Scripta Materialia, 2004, 50(7): 959–961

doi: 10.1016/j.scriptamat.2004.01.018
Camurlu H E, Maglia F. Preparation of nano-size ZrB2 powders by self-propagatinghigh-temperature synthesis. Journal ofthe European Ceramic Society, 2009, 29(8): 1501–1506

doi: 10.1016/j.jeurceramsoc.2008.09.006
Millet P, Hwang T. Preparation of zirconium boride powder. Journal of the American Ceramic Society, 1999, 8(9): 25–34
Mishra S K, Das S, Pathak L C. Defect structures in zirconium diboridepowder prepared by self-propagating high-temperature synthesis. Materials Science and Engineering A, 2004, 364(1―2): 249–255

doi: 10.1016/j.msea.2003.08.021
Xie Y, Sanders Jr T H, Speyer R F, et al. Solution-based synthesis of submicrometer ZrB2 and ZrB2-TaB2. Journal of the American Ceramic Society, 2008, 91(5): 1469–1474

doi: 10.1111/j.1551-2916.2008.02288.x
[1] Xin LIU, Xiangling REN, Longfei TAN, Wenna GUO, Zhongbing HUANG, Xianwei MENG. Preparation and enhanced properties of ZrMOF@CdTe nanoparticles with high-density quantum dots[J]. Front. Mater. Sci., 2020, 14(2): 155-162.
[2] Mengke PENG, Fenyan HU, Minting DU, Bingjie MAI, Shurong ZHENG, Peng LIU, Changhao WANG, Yashao CHEN. Hydrothermal growth of hydroxyapatite and ZnO bilayered nanoarrays on magnesium alloy surface with antibacterial activities[J]. Front. Mater. Sci., 2020, 14(1): 14-23.
[3] Pengzhang LI, Chuanjin TIAN, Wei YANG, Wenyan ZHAO, Zhe LÜ. LaNiO3 modified with Ag nanoparticles as an efficient bifunctional electrocatalyst for rechargeable zinc--air batteries[J]. Front. Mater. Sci., 2019, 13(3): 277-287.
[4] Yuqiao CHENG, Yang YANG, Chunrong NIU, Zhe FENG, Wenhui ZHAO, Shuang LU. Progress in synthesis and application of zwitterionic Gemini surfactants[J]. Front. Mater. Sci., 2019, 13(3): 242-257.
[5] Maria COROŞ, Florina POGĂCEAN, Lidia MĂGERUŞAN, Crina SOCACI, Stela PRUNEANU. A brief overview on synthesis and applications of graphene and graphene-based nanomaterials[J]. Front. Mater. Sci., 2019, 13(1): 23-32.
[6] Mengna CHEN, Peiyuan ZENG, Yueying ZHAO, Zhen FANG. CoP nanoparticles enwrapped in N-doped carbon nanotubes for high performance lithium-ion battery anodes[J]. Front. Mater. Sci., 2018, 12(3): 214-224.
[7] Yajing ZHAO,Yan CHEN,Kepi CHEN. Improvement in synthesis of (K0.5Na0.5)NbO3 powders by Ge4+ acceptor doping[J]. Front. Mater. Sci., 2016, 10(4): 422-427.
[8] Bin ZHANG,Chen LIU,Weiping KONG,Chenze QI. Magnetic motive, ordered mesoporous carbons with partially graphitized framework and controllable surface wettability: preparation, characterization and their selective adsorption of organic pollutants in water[J]. Front. Mater. Sci., 2016, 10(2): 147-156.
[9] Guangfa WANG,Linhui GAO,Hongliang ZHU,Weijie ZHOU. Hydrothermal synthesis of blue-emitting YPO4:Yb3+ nanophosphor[J]. Front. Mater. Sci., 2016, 10(2): 197-202.
[10] Ying WANG,Hong ZHANG,Zhiyuan MA,Gaomin WANG,Zhicheng LI. Li-ion storage performance and electrochemically induced phase evolution of layer-structured Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material[J]. Front. Mater. Sci., 2016, 10(2): 187-196.
[11] Michael Tanner CAMERON,Jordan A. ROGERSON,Douglas A. BLOM,Albert D. DUKES III. Quantification of the morphological transition in cadmium selenide nanocrystals as a function of reaction temperature[J]. Front. Mater. Sci., 2016, 10(1): 8-14.
[12] Cheng-Zhen WEI,Hai-Feng MA,Feng GAO. Green synthesis of metal/C and metal oxide/C films by using natural membrane as support[J]. Front. Mater. Sci., 2014, 8(2): 150-156.
[13] Marcin WYSOKOWSKI, Mykhaylo MOTYLENKO, Vasilii V. BAZHENOV, Dawid STAWSKI, Iaroslav PETRENKO, Andre EHRLICH, Thomas BEHM, Zoran KLJAJIC, Allison L. STELLING, Teofil JESIONOWSKI, Hermann EHRLICH. Poriferan chitin as a template for hydrothermal zirconia deposition[J]. Front Mater Sci, 2013, 7(3): 248-260.
[14] Zhi-Wen CHEN, Chan-Hung SHEK, C. M. Lawrence WU, Joseph K. L. LAI. Recent research situation in tin dioxide nanomaterials: synthesis, microstructures, and properties[J]. Front Mater Sci, 2013, 7(3): 203-226.
[15] Andris SUTKA, Gundars MEZINSKIS. Sol–gel auto-combustion synthesis of spinel-type ferrite nanomaterials[J]. Front Mater Sci, 2012, 6(2): 128-141.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed