Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci Chin    2010, Vol. 4 Issue (4) : 387-393    https://doi.org/10.1007/s11706-010-0098-9
RESEARCH ARTICLE
Epitaxial growth of SrRuO3 thin films by RF sputtering and study of surface morphology
M. K. R. KHAN1,2(), M. ITO3, M. ISHIDA2,3,4
1. Department of Physics, University of Rajshahi, Rajshahi-6205, Bangladesh; 2. Venture Business Laboratory, Toyohashi University of Technology, Tempakucho, Toyohashi, Aichi 441-8580, Japan; 3. Department of Electrical and Electronic Engineering, Toyohashi University of Technology, 1-1 Tempakucho, Toyohashi, Aichi 441-8580, Japan; 4. JST-CREST, 4-1-8-Honcho, Kawaguchi, Saitama, Japan
 Download: PDF(563 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We report on the epitaxial growth of SrRuO3 (SRO) thin films on Pt (111)/γ-Al2O3 (111) nSi (111) substrates. The grown thin films are crystalline and epitaxial as suggested by RHEED and XRD experiments. With the use of γ-Al2O3 (001)/nSi (001) and γ-Al2O3 (111)/nSi (111) substrates, crystalline but not epitaxial films have grown successfully. This result implies that lattice mismatch between nSi and SRO prevents the epitaxial growth of SRO film directly on nSi. However, the buffer Pt (111) layer mitigates lattice mismatch that provides to grow epitaxial film on nSi of quality. Morphological study shows a good surface with moderate roughness. Film grown at 700°C is smoother than the film grown at 750°C, but the variation of temperature does not affect significantly on the epitaxial nature of the films.

Keywords RF-sputtering      molecular beam epitaxy (MBE)      X-ray diffraction (XRD)      epitaxial Al2O3     
Corresponding Author(s): KHAN M. K. R.,Email:fkrkhan@yahoo.co.uk   
Issue Date: 05 December 2010
 Cite this article:   
M. ITO,M. ISHIDA,M. K. R. KHAN. Epitaxial growth of SrRuO3 thin films by RF sputtering and study of surface morphology[J]. Front Mater Sci Chin, 2010, 4(4): 387-393.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-010-0098-9
https://academic.hep.com.cn/foms/EN/Y2010/V4/I4/387
Fig.1  RHEED patterns of SRO films on γ-AlO (001)/nSi (001) substrate: = 500°C; = 700°C; = 750°C; = 800°C
Fig.2  RHEED patterns of SRO films on γ-AlO (111)/nSi (111) substrate: 1.0 Pa; 5.0 Pa
Fig.3  RHEED patterns of SRO films on Pt (111)/γ-AlO (111)/nSi (111) substrate: = 700°C; = 750°C
Fig.4  2 scan of XRD patterns of SRO/γ-AlO (001)/nSi (001) films
Fig.5  2 scan of XRD patterns of SRO/γ-AlO (111)/nSi (111) films
Fig.6  2-Ω (°) scan of SRO/Pt (100)/γ-AlO (100)/nSi (100) and SRO/Pt (111)/γ-AlO (111)/nSi (111)
Fig.7  AFM images of SRO/Pt (111)/γ-AlO (111)/nSi (111) films: = 700°C and = 750°C
Fig.8  3-Dimentional AFM images of SRO/Pt (111)/γ-AlO (111)/nSi (111) films: = 700°C; = 750°C
Fig.9  SEM images of SRO film grown at = 700°C: magnification= 10 k; magnification= 20 k
1 McKee R A, Walker F J, Chisholm M F. Crystalline oxides on silicon: the first five monolayers. Physical Review Letters , 1998, 81(14): 3014–3017
doi: 10.1103/PhysRevLett.81.3014
2 Eom C B, Van Dover R B, Phillips J M, . Fabrication and properties of epitaxial ferroelectric heterostructures with (SrRuO3) isotropic metallic oxide electrodes. Applied Physics Letters , 1993, 63(18): 2570–2572
doi: 10.1063/1.110436
3 Fukushima N, Abe K, Izuha M. Leakage degradation in BST dielectric capacitors with oxide and metal electrodes. In: Proceeding of Ferroelectric Thin Films VI, Materials Research Society, Pittsburg , 1997
4 Jones C W, Battle P D, Lightfoot P, . The structure of SrRuO3 by time-of-flight neutron powder diffraction. Acta Crystallographica , 1989, C45(3): 365–367
5 Randall J J, Ward R. The preparation of some ternary oxides of the platinum metals. Journal of the American Chemical Society , 1959, 81(11): 2629–2631
doi: 10.1021/ja01520a007
6 Rao R A, Gan Q, Eom C B. Growth mechanisms of epitaxial metallic oxide thin SrRuO3 thin films studied by scanning tunneling microscopy. Applied Physics Letters , 1997, 71(9): 1171–1173
doi: 10.1063/1.119616
7 Fahey K P, Clemens B M, Wills L A. Nonorthogonal twinning in thin film oxide perovskites. Applied Physics Letters , 1995, 67(17): 2480–2482
doi: 10.1063/1.114614
8 Jiang J C, Tian W, Pan X Q, . Domain structure of epitaxial SrRuO3 thin films on miscut (001) SrTiO3 substrates. Applied Physics Letters , 1998, 72(23): 2963–2965
doi: 10.1063/1.121508
9 Chen C L, Cao Y, Huang Z J, . Epitaxial SrRuO3 thin films on (001) SrTiO. Applied Physics Letters , 1997, 71(8): 1047–1049
doi: 10.1063/1.119723
10 Hiratani M, Okazaki C, Imagawa K, . SrRuO3 thin films grown under reduced oxygen pressure. Japanese Journal of Applied Physics , 1996, 35(Part 1, No. 12A): 6212–6216
11 Maria J P, Trolier-Mckinstry S, Schlom D G, . The influence of energetic bombardment on the structure and properties of epitaxial SrRuO3 thin films grown by pulsed laser deposition. Journal of Applied Physics , 1998, 83(8): 4373–4379
doi: 10.1063/1.367195
12 Jia Q X, Chu F, Adams C D, . Characteristics of conductive SrRuO3 thin films with different microstructures. Journal of Materials Research , 1996, 11(9): 2263–2268
doi: 10.1557/JMR.1996.0287
13 Chu F, Jia Q X, Landrum G, . Microstructures and electrical properties of SrRuO3 thin films on LaAlO3 substrates. Journal of Electronic Materials , 1996, 25(11): 1754–1759
doi: 10.1007/s11664-996-0031-2
14 Breitkopf R, Meda L J, Hass T, . Chemical vapor deposition of strontium ruthenate thin films from bis(2,4-dimethylpentadienyl) ruthenium and bis(tetramethylheptanedionato) strontium. Materials Research Society , 1998, 495: 51–55
15 Matsuzaki T, Okuda N, Shinozaki K, . Y2O3-stabilized ZrO2 thin films prepared by metalorganic chemical vapor deposition. Japanese Journal of Applied Physics , 1998, 37(11): 6229–6232
doi: 10.1143/JJAP.37.6229
16 Fr?hlich K, Hu?ekova K, Machajdik D, . Preparation of SrRuO3 films for advanced CMOS metal gates. Materials Science in Semiconductor Processing , 2004, 7(4–6): 265–269
doi: 10.1016/j.mssp.2004.09.012
17 Okada T, Ito M, Sawada K, . Growth of epitaxial γ-Al2O3(111) films with smooth surfaces on chemically oxidized Si(111) substrates using an Al–N2O mixed source molecular beam epitaxy. Journal of Crystal Growth , 2006, 290(1): 91–95
doi: 10.1016/j.jcrysgro.2005.12.079
18 Wado H, Shimizu T, Ishida M. Epitaxial growth of γ-Al2O3 layers on Si(111) using Al solid source and N2O gas molecular beam epitaxy. Applied Physics Letters , 1995, 67(15): 2200–2202
doi: 10.1063/1.115102
19 Jung Y-C, Miura H, Ishida M. Improvement of the surface morphology of the epitaxial γ-Al2O3 films on Si(111) grown using template growth with different temperatures by Al solid and N2O gas source molecular beam epitaxy (MBE). Journal of Crystal Growth , 1999, 201–202: 648–651
doi: 10.1016/S0022-0248(98)01439-0
20 Ishida M, Katakabe I, Ohtake N, . Epitaxial Al2O3 films on Si by low-pressure chemical vapor deposition. Applied Physics Letters , 1988, 52(16): 1326–1328
doi: 10.1063/1.99685
21 Ito M, Okada N, Takabe M, . High sensitivity ultrasonic sensor for hydrophone applications, using an epitaxial Pb(Zr,Ti)O3 film grown on SrRuO3/Pt/γ-Al2O3/Si. Sensors and Actuators A: Physical , 2008, 145–146: 278–282
doi: 10.1016/j.sna.2008.01.014
[1] David ADOLPH,Tobias TINGBERG,Thorvald ANDERSSON,Tommy IVE. Plasma-assisted molecular beam epitaxy of ZnO on in-situ grown GaN/4H-SiC buffer layers[J]. Front. Mater. Sci., 2015, 9(2): 185-191.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed