Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci Chin    2010, Vol. 4 Issue (4) : 359-365    https://doi.org/10.1007/s11706-010-0112-2
RESEARCH ARTICLE
Antibacterial and biological properties of silver-loaded coralline hydroxyapatite
Yu ZHANG1,2(), Qing-Shui YIN1, Hua-Fu ZHAO1, Jian LI1, Yue-Teng WEI3, Fu-Zhai CUI3, Hua-Yang HUANG1
1. Department of Orthopedic Surgery, General Hospital of Guangzhou Military Command, Guangzhou 510010, China; 2. Post-Graduate Institute, South China University of Technology, Guangzhou 510000, China; 3. Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
 Download: PDF(588 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The antibacterial and biological properties of silver-loated coralline hydroxyapatite (Ag-CHA) as a new antibacterial implant material were investigated in this study. Compared to other antibiotic and chemical bactericidal agents, Ag+ does not bring bacterial resistance to drugs and has less toxicity. The porous CHA was formed by hydrothermal exchange, then Ag+ was loated onto CHA through ion exchange and adsorption. The microstructure and composition of Ag-CHA were characterized by scanning electron microscopy (SEM), Rutherford backscattering spectrometry (RBS), and energy dispersive spectrometry (EDS). Antibacterial activity of Ag-CHA on the clinical strains of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was evaluated by the flat plate diffusion method. The antibacterial activity of Ag-CHA was found to be correlated with the concentration of Ag+ in a dose-dependent manner, which indicated that the optimal antibacterial and biocompatible effects of Ag-CHA could be obtained with Ag+ concentrations from 5×10-5 to 1×10-4 mol/L.

Keywords silver-loated loralline hydroxyapatite (Ag-CHA)      antibacterial activity      cytotoxicity     
Corresponding Author(s): ZHANG Yu,Email:luck_2001@126.com   
Issue Date: 05 December 2010
 Cite this article:   
Yu ZHANG,Qing-Shui YIN,Hua-Fu ZHAO, et al. Antibacterial and biological properties of silver-loaded coralline hydroxyapatite[J]. Front Mater Sci Chin, 2010, 4(4): 359-365.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-010-0112-2
https://academic.hep.com.cn/foms/EN/Y2010/V4/I4/359
Fig.1  Scanning electron microscopy (SEM) microstructures of Ag-CHA in different Ag concentration (red arrows showed the Ag particles adhered onto the coral hydroxyapatite; the same as CHA, the porosity of Ag-CHA was more than 40% and the diameters of the pores were about 150-250 μm): 1×10 mol/L; 1×10 mol/L; 5×10 mol/L; 1×10 mol/L; 8×10 mol/L; 5×10 mol/L; 1×10 mol/L; 0 mol/L; 1×10 mol/L
Fig.2  Rutherford backscattering spectrometry (RBS) analysis of Ag-CHA at different Ag concentrations (Extremely small shinning particles (shown by the red arrows) with 0.2-0.5 μm in diameter were found on the surface in high concentrations of Ag-CHA and were rarely found in low concentrations of Ag-CHA): 1×10 mol/L; 1×10 mol/L; 5×10 mol/L; 1×10 mol/L; 8×10 mol/L; 5×10 mol/L; 1×10 mol/L; 0 mol/L
ElementAtom ratio /at.%
[Ag]/(mol·L-1)=1×10-2[Ag]/(mol·L-1)=1×10-3[Ag]/(mol·L-1)=5×10-4[Ag]/(mol·L-1)=1×10-4[Ag]/(mol·L-1)=8×10-5[Ag]/(mol·L-1)=5×10-5[Ag]/(mol·L-1)=1×10-5[Ag]/(mol·L-1)=0
C19.3917.8421.2518.9416.6124.6227.8114.34
O53.9955.2153.9657.0758.2452.8659.4755.26
P7.859.319.068.189.261.341.8911.67
Ag4.552.331.961.781.520.030.03
Ca13.7515.0413.6414.0014.3718.959.8418.73
Tab.1  Atom ratio of elemental components of Ag-CHA
Fig.3  Comparison of inhibition zones of Ag-CHA on and after 24 h (=3)
GroupDiameter of the inhibition zone /mmFP
[Ag]/(mol·L-1)=1×10-2[Ag]/(mol·L-1)=1×10-3[Ag]/(mol·L-1)=5×10-4[Ag]/(mol·L-1)=1×10-4[Ag]/(mol·L-1)=8×10-5
E. coli17.68±0.3416.24±0.78 a)14.82±1.50 a)15.13±1.7816.14±0.862.7290.090
S. aureus13.04±0.40 13.38±1.3013.05±0.6212.76±0.6612.48±0.48 0.5830.682
t-14.107-2.882-1.685-1.468-8.460
P0.0050.1020.2340.2800.014
Tab.2  Comparison of inhibition zones of Ag-CHA on and after 24 h (±, =3)
Fig.4  Cytotoxicity of 100% leaching solutions of Ag-CHA on L929 cells: blank control; CHA; 1×10 mol/L Ag-CHA; 1×10 mol/L Ag-CHA; 5×10 mol/L Ag-CHA; 1×10 mol/L Ag-CHA; 8×10 mol/L Ag-CHA; 5×10 mol/L Ag-CHA; 1×10 mol/L Ag-CHA (magnification: ×100)
Group25% SolutionGrade50% SolutionGrade100% SolutionGrade
CHA111.6%0109.9%0104.0%0
[Ag+]/(mol·L-1)=1×10-29.9%48.5%46.2%4
[Ag+]/(mol·L-1)=1×10-3120.3%013.2%46.6%4
[Ag+]/(mol·L-1)=5×10-4124.5%012.2%45.4%4
[Ag+]/(mol·L-1)=1×10-4131.6%017.2%46.4%4
[Ag+]/(mol·L-1)=8×10-5100%0105.6%094.2%1
[Ag+]/(mol·L-1)=5×10-5120%0127.9%0121.4%0
[Ag+]/(mol·L-1)=1×10-5111.6%0109.9%0104%0
Tab.3  Evaluation of cytotoxicity of Ag-CHA on L929 cells with MTT method (=3)
1 Campbell A A, Song L, Li X S, . Development, characterization, and anti-microbial efficacy of hydroxyapatite-chlorhexidine coatings produced by surface-induced mineralization. Journal of Biomedical Materials Research , 2000, 53(4): 400-407
doi: 10.1002/1097-4636(2000)53:4<400::AID-JBM14>3.0.CO;2-Z
2 DeJong E S, DeBerardino T M, Brooks D E, . Antimicrobial efficacy of external fixator pins coated with a lipid stabilized hydroxyapatite/chlorhexidine complex to prevent pin tract infection in a goat model. The Journal of Trauma: Injury Infection and Critical Care , 2001, 50(6): 1008-1014
doi: 10.1097/00005373-200106000-00006
3 Kim T N, Feng Q L, Kim J O, . Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite. Journal of Materials Science: Materials in Medicine , 1998, 9(3): 129-134
doi: 10.1023/A:1008811501734
4 Cavalu S, Simona V, Albona C, . Bioactivity evaluation of new silver doped bone cement for prosthetic surgery. Journal of Optoelectronics and Advanced Materials , 2007, 9(3): 690-693
5 Chen W, Oh S, Ong A P, . Antibacterial and osteogenic properties of silver-containing hydroxyapatite coatings produced using a sol gel process. Journal of Biomedical Materials Research Part A , 2007, 82A(4): 899-906
doi: 10.1002/jbm.a.31197
6 Zhang J C, Liao J, Mo A C, . Evaluation of osteoblast responses to silver hydroxyapatite/titania nanoparticles in vitro. Key Engineering Materials , 2007, 330-332: 447-450
doi: 10.4028/www.scientific.net/KEM.330-332.447
7 Simon V, Albon C, Simon S. Silver release from hydroxyapatite self-assembling calcium-phosphate glasses. Journal of Non-Crystalline Solids , 2008, 354(15-16): 1751-1755
doi: 10.1016/j.jnoncrysol.2007.08.063
8 Hwang K S, Hwangbo S, Kim J T. Silver-doped calcium phosphate nanopowders prepared by electrostatic spraying. Journal of Nanoparticle Research , 2008, 10(8): 1337-1341
doi: 10.1007/s11051-008-9404-1
9 Yabutsuka T, Tsuboi S, Hibino M, . Fabrication of encapsulated Ag microsphere with hydroxyapatite for sustained-release. Key Engineering Materials , 2008, 361-363: 1199-1202
doi: 10.4028/www.scientific.net/KEM.361-363.1199
10 Han I-H, Lee I-S, Song J-H, . Characterization of a silver-incorporated calcium phosphate film by RBS and its antimicrobial effects. Biomedical Materials , 2007, 2(3): S91-S94
doi: 10.1088/1748-6041/2/3/S01
11 Roy D M, Linnehan S K. Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature , 1974, 247(5438): 220-222
doi: 10.1038/247220a0
12 White R A, Weber J N, White E W. Replamineform: a new process for preparing porous ceramic, metal, and polymer prosthetic materials. Science , 1972, 176(4037): 922-924
doi: 10.1126/science.176.4037.922
13 Yin Q S, Zhang H M, Su Z G, . Experimental study of repairing of a segmental diaphyseal defect with the coralline hydroxyapatite (CHA) as a bone graft substitute. Chinese Journal of Orthopaedics , 1996, 16: 726-731 (in Chinese)
14 Pushpakanth S, Srinivasan B, Sastry T P, . Biocompatible and antibacterial properties of silver-doped hydroxyapatite. Journal of Biomedical Nanotechnology , 2008, 4(1): 62-66
15 Lu G Y, Li Y B, Wei J, . The study of antibiotic texture with hydroxyapatite carrying Ag+. Journal of Functional Materials , 2005, 6(52): 922-924
[1] Mengke PENG, Fenyan HU, Minting DU, Bingjie MAI, Shurong ZHENG, Peng LIU, Changhao WANG, Yashao CHEN. Hydrothermal growth of hydroxyapatite and ZnO bilayered nanoarrays on magnesium alloy surface with antibacterial activities[J]. Front. Mater. Sci., 2020, 14(1): 14-23.
[2] Shuang GAO,Zhiguo YUAN,Tingfei XI,Xiaojuan WEI,Quanyi GUO. Characterization of decellularized scaffold derived from porcine meniscus for tissue engineering applications[J]. Front. Mater. Sci., 2016, 10(2): 101-112.
[3] Dai-Wei MA,Rong ZHU,Yi-Yu WANG,Zong-Rui ZHANG,Xin-Yu WANG. Evaluation on biocompatibility of biomedical polyurethanes with different hard segment contents[J]. Front. Mater. Sci., 2015, 9(4): 397-404.
[4] KONG Ming, CHEN Xi-guang, LIU Cheng-sheng, YU Le-jun, JI Qiu-xia, XUE Yu-ping, CHA Dong Su, PARK Hyun Jin. Preparation and antibacterial activity of chitosan microshperes in a solid dispersing system[J]. Front. Mater. Sci., 2008, 2(2): 214-220.
[5] WANG Lin, YU Bing, SUN Li-ping, REN Lei, ZHANG Qi-qing. Microsphere-integrated gelatin-siloxane hybrid scaffolds for bone tissue engineering: bioactivity & antibacterial activity[J]. Front. Mater. Sci., 2008, 2(2): 172-178.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed