Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci Chin    2010, Vol. 4 Issue (4) : 325-331    https://doi.org/10.1007/s11706-010-0113-1
REVIEW ARTICLE
Interactions between neural stem cells and biomaterials combined with biomolecules
Ying WANG1, Hua DENG1,2, Zhao-Hui ZU3, Xing-Can SHEN2, Hong LIANG2, Fu-Zhai CUI1(), Qun-Yuan XU4, In-Seop LEE5
1. Institute of Regenerative Medical and Biomimetic Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; 2. School of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, China; 3. Department of Neurosurgery, FuXing Hospital, Capital Medical University, Beijing 100038, China; 4. Beijing Institute of Neuroscience, Capital Medical University, Beijing 100069, China; 5. Institute of Physics and Applied Physics, Yonsei University, Seoul 120749, Korea
 Download: PDF(182 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Neural repair and regeneration have been a tough problem in clinical studies. Tissue engineering using biomaterials along with neural stem cells (NSCs) have shown great potential for treatment, especially along with the biomolecules to regulate the NSCs can get more promising results. The biomolecules in the materials have a favorable impact on cell adhes ion, expansion, and differentiation. Thus, the interactions between biomaterials loading biomolecules and NSCs also receive particular attention. In this review, recent progresses of modified biomaterials by such biomolecules for neural injury and their impact on NSCs behavior will be discussed.

Keywords biomaterial      neural stem cell (NSC)      tissue engineering      biomolecule     
Corresponding Author(s): CUI Fu-Zhai,Email:cuifz@mail.tsinghua.edu.cn   
Issue Date: 05 December 2010
 Cite this article:   
Ying WANG,Hua DENG,Zhao-Hui ZU, et al. Interactions between neural stem cells and biomaterials combined with biomolecules[J]. Front Mater Sci Chin, 2010, 4(4): 325-331.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-010-0113-1
https://academic.hep.com.cn/foms/EN/Y2010/V4/I4/325
Fig.1  The strategy of neural repair and regeneration using biomaterial scaffold loading bioactive factors. The ideal biomaterials were prepared for three-dimensional scaffold. The bioactive factors can be modified directly on the scaffold or loaded by other small vehicles. Then, the neural stem cells (NSCs) were seeded on the scaffold and transplanted into the injury tissue for repair. The materials with bioactive factors can influence the survival, proliferation, and differentiation of transplanted NSCs and induce neurogenesis of endogenous NSCs in SVZ or SGZ, and so on. Moreover, they can perform more effective interactions with the surrounding tissues. Therefore, the complex gets much better improvement for neural regeneration.
1 Subramanian A, Krishnan U M, Sethuraman S. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration. Journal of Biomedical Science , 2009, 16(1): 108
doi: 10.1186/1423-0127-16-108
2 Barnabé-Heider F, Miller F D. Endogenously produced neurotrophins regulate survival and differentiation of cortical progenitors via distinct signaling pathways. Journal of Neuroscience , 2003, 23(12): 5149–5160
3 Islam O, Loo T X, Heese K. Brain-derived neurotrophic factor (BDNF) has proliferative effects on neural stem cells through the truncated TRK-B receptor, MAP kinase, AKT, and STAT-3 signaling pathways. Current Neurovascular Research , 2009, 6(1): 42–53
doi: 10.2174/156720209787466028
4 Yaghoobi M M, Mahani M T. NGF and BDNF expression drop off in neurally differentiated bone marrow stromal stem cells. Brain Research , 2008, 1203: 26–31
doi: 10.1016/j.brainres.2008.01.086
5 Lachyankar M B, Condon P J, Quesenberry P J, . Embryonic precursor cells that express Trk receptors: induction of different cell fates by NGF, BDNF, NT-3, and CNTF. Experimental Neurology , 1997, 144(2): 350–360
doi: 10.1006/exnr.1997.6434
6 Schmidt M H H, Bicker F, Nikolic I, . Epidermal growth factor-like domain 7 (EGFL7) modulates Notch signalling and affects neural stem cell renewal. Nature Cell Biology , 2009, 11(7): 873–880
doi: 10.1038/ncb1896
7 Moon B S, Yoon J Y, Kim M Y, . Bone morphogenetic protein 4 stimulates neuronal differentiation of neuronal stem cells through the ERK pathway. Experimental & Molecular Medicine , 2009, 41(2): 116–125
doi: 10.3858/emm.2009.41.2.014
8 Zunszain P, Anacker C, Carvalho L, . The role of pro-inflammatory cytokines IL-ip and IL-6 on proliferation of human hippocampal neural stem cells. European Neuropsychopharmacolo-gy , 2009, 19(Supplement 3): S275
doi: 10.1016/S0924-977X(09)70401-8
9 Paik J H, Ding Z H, Narurkar R, . FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis. Cell Stem Cell , 2009, 5(5): 540–553
doi: 10.1016/j.stem.2009.09.013
10 Lountos G T, Tropea J E, Zhang D, . Crystal structure of checkpoint kinase 2 in complex with NSC 109555, a potent and selective inhibitor. Protein Science , 2009, 18(1): 92–100
11 Mondal D, Pradhan L, LaRussa V F. Signal transduction pathways involved in the lineage-differentiation of NSCs: can the knowledge gained from blood be used in the brain? Cancer Investigation , 2004, 22(6): 925–943
doi: 10.1081/CNV-200039679
12 Ren Y J, Zhang H, Huang H, . In vitro behavior of neural stem cells in response to different chemical functional groups. Biomaterials , 2009, 6(30): 1036–1044
doi: 10.1016/j.biomaterials.2008.10.028
13 Doetsch F, Petreanu L, Caille I, . EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron , 2002, 36(6): 1021–1034
doi: 10.1016/S0896-6273(02)01133-9
14 Mira H, Andreu Z, Suh H, . Signaling through BMPR-IA regulates quiescence and long-term activity of neural stem cells in the adult hippocampus. Cell Stem Cell , 2010, 7(1): 78–89
doi: 10.1016/j.stem.2010.04.016
15 Huang Y S, Cheng S N, Chueh S H, . Effects of interleukin-15 on neuronal differentiation of neural stem cells. Brain Research , 2009, 1304: 38–48
doi: 10.1016/j.brainres.2009.09.009
16 Islam O, Gong X, Rose-John S, . Interleukin-6 and neural stem cells: more than gliogenesis. Molecular Biology of the Cell , 2009, 20(1): 188–199
doi: 10.1091/mbc.E08-05-0463
17 Martin I, Andres C R, Védrine S, . Effect of the oligodendrocyte myelin glycoprotein (OMgp) on the expansion and neuronal differentiation of rat neural stem cells. Brain Research , 2009, 1284: 22–30
doi: 10.1016/j.brainres.2009.05.070
18 Su L, Lv X, Xu J P, . Neural stem cell differentiation is mediated by integrin β4 in vitro. The International Journal of Biochemistry & Cell Biology , 2009, 41(4): 916–924
doi: 10.1016/j.biocel.2008.09.001
19 Chen C R, Li Y C, Young T H. Gallium nitride induces neuronal differentiation markers in neural stem/precursor cells derived from rat cerebral cortex. Acta Biomaterialia , 2009, 5(7): 2610–2617
doi: 10.1016/j.actbio.2009.03.037
20 Ren Y J, Zhang H, Huang H, . In vitro behavior of neural stem cells in response to different chemical functional groups. Biomaterials , 2009, 30(6): 1036–1044
doi: 10.1016/j.biomaterials.2008.10.028
21 Kerrigan J J, Mansell J P, Sandy J R. Matrix turnover. Journal of Orthodontics , 2000, 27(3): 227–233
22 Guo B-F, Dong M-M. Application of neural stem cells in tissue-engineered artificial nerve. Otolaryngology - Head and Neck Surgery , 2009, 140(2): 159–164
doi: 10.1016/j.otohns.2008.10.039
23 Lin H J, O’Shaughnessy T J, Kelly J, . Neural stem cell differentiation in a cell-collagen-bioreactor culture system. Developmental Brain Research , 2004, 153(2): 163–173
doi: 10.1016/j.devbrainres.2004.08.010
24 Yang Z Y, Qiao H, Li X G. Effects of the CNTF-collagen gel-controlled delivery system on rat neural stem/progenitor cells behavior. Science China - Life Sciences , 2010, 53(4): 504–510
25 Zhang H, Wei Y T, Tsang K S, . Implantation of neural stem cells embedded in hyaluronic acid and collagen composite conduit promotes regeneration in a rabbit facial nerve injury model. Journal of Translational Medicine , 2008, 6(1): 67 (11 pages)
26 Mi F-L, Shyu S-S, Peng C-K, . Fabrication of chondroitin sulfate-chitosan composite artificial extracellular matrix for stabilization of fibroblast growth factor. Journal of Biomedical Materials Research Part A , 2006, 76A(1): 1–15
doi: 10.1002/jbm.a.30298
27 Walker P A, Aroom K R, Jimenez F, . Advances in progenitor cell therapy using scaffolding constructs for central nervous system injury. Stem Cell Reviews and Reports , 2009, 5(3): 283–300
doi: 10.1007/s12015-009-9081-1
28 Cooke M J, Zahir T, Phillips S R, . Neural differentiation regulated by biomimetic surfaces presenting motifs of extracellular matrix proteins. Journal of Biomedical Materials Research. Part A , 2010, 93(3): 824–832
29 Hwang N S, Varghese S, Elisseeff J. Controlled differentiation of stem cells. Advanced Drug Delivery Reviews , 2008, 60(2): 199–214
doi: 10.1016/j.addr.2007.08.036
30 Adamia S, Maxwell C A, Pilarski L M. Hyaluronan and hyaluronan synthases: potential therapeutic targets in cancer. Current Drug Targets - Cardiovascular & Haematological Disorders , 2005, 5(1): 3–14
doi: 10.2174/1568006053005056
31 Hou S, Tian W, Xu Q, . The enhancement of cell adherence and inducement of neurite outgrowth of dorsal root ganglia co-cultured with hyaluronic acid hydrogels modified with Nogo-66 receptor antagonist in vitro. Neuroscience , 2006, 137(2): 519–529
doi: 10.1016/j.neuroscience.2005.09.029
32 Tian W M, Zhang C L, Hou S P, . Hyaluronic acid hydrogel as Nogo-66 receptor antibody delivery system for the repairing of injured rat brain: in vitro. Journal of Controlled Release , 2005, 102(1): 13–22
doi: 10.1016/j.jconrel.2004.09.025
33 Hu J G, Deng L X, Wang X F, . Effects of extracellular matrix molecules on the growth properties of oligodendrocyte progenitor cells in vitro. Journal of Neuroscience Research , 2009, 87(13): 2854–2862
doi: 10.1002/jnr.22111
34 Hou S P, Xu Q Y, Tian W M, . The repair of brain lesion by implantation of hyaluronic acid hydrogels modified with laminin. Journal of Neuroscience Methods , 2005, 148(1): 60–70
doi: 10.1016/j.jneumeth.2005.04.016
35 Philp D, Chen S S, Fitzgerald W, . Complex extracellular matrices promote tissue-specific stem cell differentiation. Stem Cells , 2005, 23(2): 288–296
doi: 10.1634/stemcells.2002-0109
36 Deguchi K, Tsuru K, Hayashi T, . Implantation of a new porous gelatin-siloxane hybrid into a brain lesion as a potential scaffold for tissue regeneration. Journal of Cerebral Blood Flow and Metabolism , 2006, 26(10): 1263–1273
doi: 10.1038/sj.jcbfm.9600275
37 Miyazaki H, Kato K, Teramura Y, . A collagen-binding mimetic of neural cell adhesion molecule. Bioconjugate Chemistry , 2008, 19(6): 1119–1123
doi: 10.1021/bc700470v
38 Zhang X M, Huang G W, Tian Z H, . Folate stimulates ERK1/2 phosphorylation and cell proliferation in fetal neural stem cells. Nutritional Neuroscience , 2009, 12(5): 226–232
doi: 10.1179/147683009X423418
39 Yabe T, Hirahara H, Harada N, . Ferulic acid induces neural progenitor cell proliferation in vitro and in vivo. Neuroscience , 2010, 165(2): 515–524
doi: 10.1016/j.neuroscience.2009.10.023
40 Nan G X, Li M, Liao W H, . Effect of valproic acid on endogenous neural stem cell proliferation in a rat model of spinal cord injury. Neural Regeneration Research , 2009, 4(7): 513–517
41 Tabopda T K, Ngoupayo J, Liu J W, . Induction of neuronal differentiation in neurosphere stem cells by ellagic acid derivatives. Natural Product Communications , 2009, 4(4): 517–520
42 Nakaji-Hirabayashi T, Kato K, Iwata H. Hyaluronic acid hydrogel loaded with genetically-engineered brain-derived neurotrophic factor as a neural cell carrier. Biomaterials , 2009, 30(27): 4581–4589
doi: 10.1016/j.biomaterials.2009.05.009
43 Katakura M, Hashimoto M, Shahdat H M, . Docosahexaenoic acid promotes neuronal differentiation by regulating basic helix-loop-helix transcription factors and cell cycle in neural stem cells. Neuroscience , 2009, 160(3): 651–660
doi: 10.1016/j.neuroscience.2009.02.057
44 Guo G Q, Li B, Wang Y Y, . Effects of salvianolic acid B on proliferation, neurite outgrowth and differentiation of neural stem cells derived from the cerebral cortex of embryonic mice. Science China: Life Sciences , 2010, 53(6): 653–662
45 Willenberg B J, Hamazaki T, Meng F W, . Self-assembled copper-capillary alginate gel scaffolds with oligochitosan support embryonic stem cell growth. Journal of Biomedical Materials Research Part A , 2006, 79A(2): 440–450
doi: 10.1002/jbm.a.30942
46 Sharma R, Greenhough S, Medine C N, . Three-dimensional culture of human embryonic stem cell derived hepatic endoderm and its role in bioartificial liver construction. Journal of Biomedicine and Biotechnology , 2010, 2010: 236147 (12 pages)
47 Leor J, Gerecht S, Cohen S, . Human embryonic stem cell transplantation to repair the infarcted myocardium. Heart , 2007, 93(10): 1278–1284
doi: 10.1136/hrt.2006.093161
48 Li X G, Yang Z Y, Zhang A. The effect of neurotrophin-3/chitosan carriers on the proliferation and differentiation of neural stem cells. Biomaterials , 2009, 30(28): 4978–4985
doi: 10.1016/j.biomaterials.2009.05.047
50 Leipzig N D, Xu C C, Zahir T, . Functional immobilization of interferon-gamma induces neuronal differentiation of neural stem cells. Journal of Biomedical Materials Research Part A , 2010, 93(2): 625–633
51 Xu X Y, Li X T, Peng S W, . The behaviour of neural stem cells on polyhydroxyalkanoate nanofiber scaffolds. Biomaterials , 2010, 31(14): 3967–3975
doi: 10.1016/j.biomaterials.2010.01.132
52 Namba R M, Cole A A, Bjugstad K B, . Development of porous PEG hydrogels that enable efficient, uniform cell-seeding and permit early neural process extension. Acta Biomaterialia , 2009, 5(6): 1884–1897
doi: 10.1016/j.actbio.2009.01.036
53 Lampe K J, Mooney R G, Bjugstad K B, . Effect of macromer weight percent on neural cell growth in 2D and 3D nondegradable PEG hydrogel culture. Journal of Biomedical Materials Research Part A , 2010, 94(4): 1162–1171
54 Ananthanarayanan B, Little L, Schaffer D V, . Neural stem cell adhesion and proliferation on phospholipid bilayers functionalized with RGD peptides. Biomaterials , 2010, 31(33): 8706–8715
doi: 10.1016/j.biomaterials.2010.07.104
55 Song Y L, Zheng Q X, Wu Y C, . Two-dimensional effects of hydrogel self-organized from IKVAV-containing peptides on growth and differentiation of NSCs. Journal of Wuhan University of Technology - Materials Science Edition , 2009, 24(2): 186–192
56 Bible E, Chau D Y, Alexander M R, . The support of neural stem cells transplanted into stroke-induced brain cavities by PLGA particles. Biomaterials , 2009, 30(16): 2985–2994
doi: 10.1016/j.biomaterials.2009.02.012
57 Horne M K, Nisbet D R, Forsythe J S, . Three-dimensional nanofibrous scaffolds incorporating immobilized BDNF promote proliferation and differentiation of cortical neural stem cells. Stem Cells and Development , 2010, 19(6): 843–852
doi: 10.1089/scd.2009.0158
58 Lam H J, Patel S, Wang A, . In vitro regulation of neural differentiation and axon growth by growth factors and bioactive nanofibers. Tissue Engineering Part A , 2010, 16(8): 2641–2648
doi: 10.1089/ten.tea.2009.0414
[1] Ling-Yu LI, Bin LIU, Rong-Chang ZENG, Shuo-Qi LI, Fen ZHANG, Yu-Hong ZOU, Hongwei (George) JIANG, Xiao-Bo CHEN, Shao-Kang GUAN, Qing-Yun LIU. In vitro corrosion of magnesium alloy AZ31 --- a synergetic influence of glucose and Tris[J]. Front. Mater. Sci., 2018, 12(2): 184-197.
[2] Inamullah MAITLO, Safdar ALI, Muhammad Yasir AKRAM, Farooq Khurum SHEHZAD, Jun NIE. Binary phase solid-state photopolymerization of acrylates: design, characterization and biomineralization of 3D scaffolds for tissue engineering[J]. Front. Mater. Sci., 2017, 11(4): 307-317.
[3] Lan-Yue CUI, Xiao-Ting LI, Rong-Chang ZENG, Shuo-Qi LI, En-Hou HAN, Liang SONG. In vitro corrosion of Mg--Ca alloy --- The influence of glucose content[J]. Front. Mater. Sci., 2017, 11(3): 284-295.
[4] Yinxian YU, Binbin SUN, Chengqing YI, Xiumei MO. Stem cell homing-based tissue engineering using bioactive materials[J]. Front. Mater. Sci., 2017, 11(2): 93-105.
[5] Juan WANG,Binbin SUN,Muhammad Aqeel BHUTTO,Tonghe ZHU,Kui YU,Jiayu BAO,Yosry MORSI,Hany EL-HAMSHARY,Mohamed EL-NEWEHY,Xiumei MO. Fabrication and characterization of Antheraea pernyi silk fibroin-blended P(LLA-CL) nanofibrous scaffolds for peripheral nerve tissue engineering[J]. Front. Mater. Sci., 2017, 11(1): 22-32.
[6] Xuran GUO,Kaile ZHANG,Mohamed EL-AASSAR,Nanping WANG,Hany EL-HAMSHARY,Mohamed EL-NEWEHY,Qiang FU,Xiumei MO. The comparison of the Wnt signaling pathway inhibitor delivered electrospun nanoyarn fabricated with two methods for the application of urethroplasty[J]. Front. Mater. Sci., 2016, 10(4): 346-357.
[7] Yu-Hong ZOU,Rong-Chang ZENG,Qing-Zhao WANG,Li-Jun LIU,Qian-Qian XU,Chuang WANG,Zhiwei LIU. Blood compatibility of zinc–calcium phosphate conversion coating on Mg–1.33Li–0.6Ca alloy[J]. Front. Mater. Sci., 2016, 10(3): 281-289.
[8] Shuang GAO,Zhiguo YUAN,Tingfei XI,Xiaojuan WEI,Quanyi GUO. Characterization of decellularized scaffold derived from porcine meniscus for tissue engineering applications[J]. Front. Mater. Sci., 2016, 10(2): 101-112.
[9] Jianchao ZHAN,Yosry MORSI,Hany EI-HAMSHARY,Salem S. AL-DEYAB,Xiumei MO. In vitro evaluation of electrospun gelatin–glutaraldehyde nanofibers[J]. Front. Mater. Sci., 2016, 10(1): 90-100.
[10] Lei ZHOU,Guo-Xin TAN,Cheng-Yun NING. Modification of biomaterials surface by mimetic cell membrane to improve biocompatibility[J]. Front. Mater. Sci., 2014, 8(4): 325-331.
[11] Rong-Chang ZENG,Wei-Chen QI,Ying-Wei SONG,Qin-Kun HE,Hong-Zhi CUI,En-Hou HAN. In vitro degradation of MAO/PLA coating on Mg--1.21Li--1.12Ca--1.0Y alloy[J]. Front. Mater. Sci., 2014, 8(4): 343-353.
[12] Hong-Man WANG,Fu-Yao LI. Bibliometric analysis of the literature from the mainland of China on animal-derived regenerative implantable medical devices[J]. Front. Mater. Sci., 2014, 8(4): 403-408.
[13] Xue-Nan GU,Shuang-Shuang LI,Xiao-Ming Li,Yu-Bo Fan. Magnesium based degradable biomaterials: A review[J]. Front. Mater. Sci., 2014, 8(3): 200-218.
[14] Rong-Chang ZENG,Lei WANG,Ding-Fei ZHANG,Hong-Zhi CUI,En-Hou HAN. In vitro corrosion of Mg--6Zn--1Mn--4Sn--1.5Nd/0.5Y alloys[J]. Front. Mater. Sci., 2014, 8(3): 230-243.
[15] Cheng-Long LIU,Yi ZHANG,Chun-Yan ZHANG,Wei WANG,Wei-Jiu HUANG,Paul K. CHU. Synergistic effect of chloride ion and albumin on the corrosion of pure magnesium[J]. Front. Mater. Sci., 2014, 8(3): 244-255.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed