Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci    2011, Vol. 5 Issue (3) : 322-328    https://doi.org/10.1007/s11706-011-0118-4
RESEARCH ARTICLE
One pot synthesis of monodispersed L-glutathione stabilized gold nanoparticles for the detection of Pb2+ ions
Xiang MAO1,2, Zheng-Ping LI1(), Zhi-Yong TANG2()
1. Key Laboratory of Medicine Chemistry and Molecular Diagnosis (Ministry of Education), College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China; 2. National Center for Nanoscience and Technology, Beijing 100190, China
 Download: PDF(474 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Direct mixture of Au3+ with glutathione (GSH), which act as both reduction agents and stabilizers, in aqueous solution gave rise to production of gold nanoparticles (Au NPs) with uniform sizes of around 21 nm. The GSH stabilizer Au NPs in solution show immediate aggregation after addition of 1 mol/L NaCl aqueous solution containing Pb2+ ions. The Pb2+-induced aggregation in Au NP solution is monitored by both colorimetric response and UV-vis spectroscopy. A rather broad linear range (from 0.1 to 30 μmol/L) and low detection limit (0.1 μmol/L) are explored for Au NP sensors used for detection of Pb2+ ions. Furthermore, the response of GSH-stabilized Au NPs toward Pb2+ ions is specific compared with other possible interferants (Hg2+, Mg2+, Zn2+, Ni2+, Cu2+, Co2+, Ca2+, Mn2+, Cd2+, and Ba2+).

Keywords lead(II) ion      glutathione (GSH)      gold nanoparticle (Au NP)      detection      colorimetric response     
Corresponding Author(s): LI Zheng-Ping,Email:lzpbd@126.com (Z.P.L.); TANG Zhi-Yong,Email:zytang@nanoctr.cn (Z.Y.T.)   
Issue Date: 05 September 2011
 Cite this article:   
Xiang MAO,Zheng-Ping LI,Zhi-Yong TANG. One pot synthesis of monodispersed L-glutathione stabilized gold nanoparticles for the detection of Pb2+ ions[J]. Front Mater Sci, 2011, 5(3): 322-328.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-011-0118-4
https://academic.hep.com.cn/foms/EN/Y2011/V5/I3/322
Fig.1  Synthesis and detection strategy for GSH stabilized Au NPs.
Fig.2  TEM and SEM images of GSH-stabilized Au NPs; Selective area electron diffraction pattern of NPs, denoting the cubic Au structures; Size histogram analysis of Au NPs.
Fig.3  UV-vis spectra in absence and presence of 20 μmol/L Pb solution. Inset images represent the colorimetric response.
Fig.4  TEM images of GSH stabilized Au NPs before and after the addition of 20 μmol/L Pb ions.
Fig.5  UV-vis absorption spectra of GSH-stabilized Au NP solution after addition of Pb ions of different concentration (0, 0.1, 0.5, 1, 5, 10, 20, and 30 μmol/L); Plot of absorbance ratio, , against concentration of Pb ions.
Fig.6  UV-vis absorption spectra of GSH stabilized Au NPs containing 50 μmol/L different types of metal ions compared with 20 μmol/L Pb (metal ions are incubated with Au NP solutions); Corresponding photo images of Au NPs that contain 50 μmol/L different types of metal ions compared with 20 μmol/L Pb (From a to l, the ions are Zn, Co, Ni, Al, Cu, Mg, Hg, Cd, Bi, Ca, Mn, and Pb, respectively).
Fig.7  Values () of GSH-GNPs in sequence addition of 50 μmol/L metal ions and 20 μmol/L Pb ions. The error bars represent the standard deviations based on three independent measurements.
1 Liu C W, Huang C C, Chang H T. Control over surface DNA density on gold nanoparticles allows selective and sensitive detection of mercury(II). Langmuir , 2008, 24(15): 8346–8350
doi: 10.1021/la800589m
2 Walkup G K, Imperiali B. Design and evaluation of a peptidyl fluorescent chemosensor for divalent zinc. Journal of the American Chemical Society , 1996, 118(12): 3053–3054
doi: 10.1021/ja9538501
3 Turner A P F. Biosensors — sense and sensitivity. Science , 2000, 290(5495): 1315–1317
doi: 10.1126/science.290.5495.1315
4 Chen P, He C. A general strategy to convert the MerR family proteins into highly sensitive and selective fluorescent biosensors for metal ions. Journal of the American Chemical Society , 2004, 126(3): 728–729
doi: 10.1021/ja0383975
5 Liu J, Lu Y. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. Journal of the American Chemical Society , 2003, 125(22): 6642–6643
doi: 10.1021/ja034775u
6 Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold solutions. Nature Physical Science , 1973, 241: 20–22
7 Schmid G. The role of big metal clusters in nanoscience. Journal of the Chemical Society, Dalton Transactions , 1998, 7: 1077–1082
doi: 10.1039/a708447a
8 Wenzel T, Bosbach J, Stietz F, . In situ determination of the shape of supported silver clusters during growth. Surface Science , 1999, 432(3): 257–264
doi: 10.1016/S0039-6028(99)00546-4
9 Cai W P, Hofmeister H, Rainer T, . Optical properties of Ag and Au nanoparticles dispersed within the pores of monolithic mesoporous silica. Journal of Nanoparticle Research , 2001, 3(5–6): 441–451
doi: 10.1023/A:1012537817570
10 Jin R C, Cao Y W, Mirkin C A, . Photoinduced conversion of silver nanospheres to nanoprisms. Science , 2001, 294(5548): 1901–1903
doi: 10.1126/science.1066541
11 Innocenzi P, Brusatin G, Martucci A, . Microstructural characterization of gold-doped silica-titania sol-gel films. Thin Solid Films , 1996, 279(1–2): 23–28
doi: 10.1016/0040-6090(95)08032-5
12 Hutter E, Pileni M-P. Detection of DNA hybridization by gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy. The Journal of Physical Chemistry B , 2003, 107(27): 6497–6499
doi: 10.1021/jp0342834
13 El-Sayed M A. Some interesting properties of metals confined in time and nanometer space of different shapes. Accounts of Chemical Research , 2001, 34(4): 257–264
doi: 10.1021/ar960016n
14 Nolan E M, Lippard S J. Tools and tactics for the optical detection of mercuric ion. Chemical Reviews , 2008, 108(9): 3443–3480
doi: 10.1021/cr068000q
15 Chai F, Wang C, Wang T, . Colorimetric detection of Pb2+ using glutathione functionalized gold nanoparticles. ACS Applied Materials & Interface , 2010, 2(5): 1466–1470
doi: 10.1021/am100107k
16 Liu X, Atwater M, Wang J, . Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids and Surfaces B: Biointerfaces , 2007, 58(1): 3–7
doi: 10.1016/j.colsurfb.2006.08.005
17 He S J, Li D, Zhu C F, . Design of a gold nanoprobe for rapid and portable mercury detection with the naked eye. Chemical Communications , 2008, (40): 4885–4887
doi: 10.1039/b811528a
18 Huang K W, Yu C J, Tseng W L. Sensitivity enhancement in the colorimetric detection of lead(II) ion using gallic acid-capped gold nanoparticles: improving size distribution and minimizing interparticle repulsion. Biosensors & Bioelectronics , 2010, 25(5): 984–989
doi: 10.1016/j.bios.2009.09.006
19 Slocik J M, Zabinski J S Jr, Phillips D M, . Colorimetric response of peptide-functionalized gold nanoparticles to metal ions. Small , 2008, 4(5): 548–551
doi: 10.1002/smll.200700920
20 Darbha G K, Singh A K, Rai U S, . Selective detection of mercury(II) ion using nonlinear optical properties of gold nanoparticles. Journal of the American Chemical Society , 2008, 130(25): 8038–8043
doi: 10.1021/ja801412b
21 Yu C J, Tseng W L. Colorimetric detection of mercury(II) in a high-salinity solution using gold nanoparticles capped with 3-mercaptopropionate acid and adenosine monophosphate. Langmuir , 2008, 24(21): 12717–12722
doi: 10.1021/la802105b
22 Kim Y, Johnson R C, Hupp J T. Gold nanoparticle-based sensing of “spectroscopically silent” heavy metal ions. Nano Letters , 2001, 1(4): 165–167
doi: 10.1021/nl0100116
[1] Yang SHENG, Jie YANG, Qiliang ZHU, Yixin SUN, Rong ZHANG, Xiaosheng TANG. Facile synthesis of Cu--In--Zn--S alloy nanospheres for fast photoelectric detection across the visible spectrum[J]. Front. Mater. Sci., 2020, 14(3): 323-331.
[2] Hui-Li DING,Tao ZHANG,Rui GAO,Xian-Ping WANG,Qian-Feng FANG,Chang-Song LIU,Jin-Ping SUO. Low-temperature mechanical and magnetic properties of the reduced activation martensitic steel[J]. Front. Mater. Sci., 2015, 9(3): 264-271.
[3] B. ASWATHY, G. S. AVADHANI, S. SUJI, G. SONY. Synthesis of β-cyclodextrin functionalized gold nanoparticles for the selective detection of Pb2+ ions from aqueous solution[J]. Front Mater Sci, 2012, 6(2): 168-175.
[4] XIAO Jian-hua, LIU Feng, CHEN Hai-li, HU Jun, LIU Hong-lai. Synthesis, characterization and fluorescence quenching of poly(fluorene-alt-enylenevinylene)s[J]. Front. Mater. Sci., 2008, 2(4): 409-416.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed