Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci    2011, Vol. 5 Issue (2) : 209-215    https://doi.org/10.1007/s11706-011-0133-5
RESEARCH ARTICLE
Hybrid model for prediction of welding distortions in large structures
Vesselin MICHAILOV(), Nikolay DOYNOV, Christoph STAPELFELD, Ralf OSSENBRINK
Chair of Joining and Welding Technology, Brandenburg Technical University of Cottbus, Konrad-Wachsmann-Allee 17, 03046 Cottbus, Germany
 Download: PDF(479 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The paper presents a short overview of the contemporary approaches for calculating welding distortions. In order to meet the existing challenges, an advanced hybrid model for prediction of welding distortions in large structures is described. For the purpose of illustrating the capability of this model, a simulation case is put into discussion. The results are validated by comparison with experimental data, as well as with common simulation technique. Analysis of the calculation costs is also presented. The directions for development of calculation technique, based on the presented model, are also suggested.

Keywords hybrid model      welding distortion      calculation     
Corresponding Author(s): MICHAILOV Vesselin,Email:lft@tu-cottbus.de   
Issue Date: 05 June 2011
 Cite this article:   
Vesselin MICHAILOV,Nikolay DOYNOV,Christoph STAPELFELD, et al. Hybrid model for prediction of welding distortions in large structures[J]. Front Mater Sci, 2011, 5(2): 209-215.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-011-0133-5
https://academic.hep.com.cn/foms/EN/Y2011/V5/I2/209
Fig.1  The shrinkage force calculation program “WELDIS”.
Fig.2  The flow chart of the hybrid model.
Fig.3  Complex structure: overview of the experimental arrangement, turned; position of the welds W1…W8 and clamps UX, UY, UZ; position of the inductive displacement transducers CH0…CH13.
Fig.4  Constraining of the FE-model.
Fig.5  Applied loads from the butt weld W1 and from the filled weld W7.
Fig.6  Calculated residual distortion of the structure (displacements scaling × 120).
Fig.7  Calculated displacement compared with the experimental data.
1 H?nsch H. Schwei?eigenspannungen und Form?nderungen an stabartigen Bauteilen, Berechnung und Bewertung. Fachbuchreihe Schwei?technik, Band 81 . Düsseldorf: DVS Verlag, 1984 (in German)
2 Okerblom N O. Welding Stresses in Metal Structures. Moscow: Mashinostroenie Publishing House, 1955 (in Russian)
3 Nikolaev G A. Welding Structures. Moscow: Maschgiz, 1962 (in Russian)
4 Gatovskii K M, Karkhin V A. Theory of Welding Stresses and Deformations. Leningrad: Leningrad Shipbuilding Institute, 1980 (in Russian)
5 Vinokurov V A. Welding Stresses and Distortion. Moscow: Mashinostroenie Publishing House, 1968 (Translated in English, British Library, Wetherby, 1977)
6 Kuzminov S A. Welding Deformations of Ship-Structures. Leningrad: Sudostroenie Publishing House, 1974 (in Russian)
7 Ueda Y, Fukuda K, Kim Y C. Restraint intensities of a slit in a finite plate. Transactions of JWRI (Joining and Welding Research Institute of Osaka University) , 1978, 7(1): 11–16
8 Neumann A, R?benack K-D. Verformungen und Spannungen beim Schwei?en. Berlin: VEB Verlag Technik, 1978 (in German)
9 Makhnenko V I. Numerical Methods of Study to the Kinetics of Welding Stresses and Distortions. Kiev: Naukova dumka, 1976, 320 (in Russian)
10 Stadtaus M, Vo? O, Michailov V G, . Berechnung von Nahtgeometrie, Gefüge, Verzug und Eigenspannungen beim Schmelzschwei?en. DVS-Berichte , 2002, 216: 315–321 (in German)
11 Ossenbrink R, Wohlfahrt H, Michailov V G. Numerical simulation of welding stresses and distortions under consideration of temporal and local changes of strain rate. Journal de Physique IV France , 2004, 120: 169–175
12 Ossenbrink R, Brand M, Michailov V G, . Numerische Simulation der Eigenspannungen und des Bauteilverzugs beim Schwei?en mit Berücksichtigung des Umwandlungsverhaltens. In: Deutscher Verband für Schwei?en und Verwandte Verfahren e.V. -DVS-: Schwei?en und Schneiden 2003: Vortr?ge der gleichnamigen Gro?en Schwei?technischen Tagung in Berlin vom 17. bis 19. September 2003. Düsseldorf: DVS-Verlag , 2003, 279–283 (in German)
13 Doynov N, Christov S, . Finite elements simulation of multipass submerged arc welding. Cerjak H, Bhadeshia H K D H, eds. Mathematical Modelling of Weld Phenomena 6, MANEY - YOM , 2001, 651–669
14 Brand M, Michailov V G, Wohlfahrt H. FE-welding simulation and distortion measurement during welding using optical object grating method. In: Mathematical Modelling of Weld Phenomena 7, TU Graz , 2005, 763–778
15 Radaj D. Welding residual stresses and distortion. Calculation and Measurement . Düsseldorf: DVS Verlag, 2003
16 Duan Y G, Vincent Y, Boitout F, . Prediction of welding residual distortions of large structures using a local/global approach. Journal of Mechanical Science and Technology , 2007, 21(10): 1700–1706
doi: 10.1007/BF03177397
17 Tsirkas S A, Papanikos P, Pericleous K, . Evaluation of distortions in laser welded shipbuilding parts using local-global finite element approach. Science and Technology of Welding and Joining , 2003, 8(2): 79–88
doi: 10.1179/136217103225010899
18 Tikhomirov D, Rietman B, Kose K, . Computing welding distortion: comparison of different industrially applicable methods. Advanced Materials Research, SHEMET , 2005, 6–8: 195–202
doi: 10.4028/www.scientific.net/AMR.6-8.195
19 Rietman B, Kose K, Tikhomirov D. Mechanische Schwei?ersatzmodelle für gekoppelte Simulation, IWB Seminar “Fügetechnik im Leichtbau” 16–17 M?rz '04, Carl-Hanser Verlag, Stuttgart 2004, Seminar Band: 1–12 (in German)
20 Audronis M, Berndikas J. The welding deformations of chrome-nickel stainless steels. Material Science , 2003, 9(2): 169–173
21 Jang C D, Lee C H, Ko D E. Prediction of welding deformations of stiffened panels. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment , 2002, 216(2): 133–143
22 Jang C D, Kim Y T, Jo Y C, . Welding distortion analysis of hull blocks using equivalent load method based on inherent strain. In: 10th International Symposium on Practical Design of Ships and Other Floating Structures, Houston, Texas, USA , 2007 (5 pages)
23 Takechi S, Aoyama K, Nomoto T. Basic studies on accuracy management systems based on estimating welding deformations. Journal of Marine Science and Technology , 1998, 3(4): 194–200
doi: 10.1007/BF02492934
24 Tsai C L, Park S C, Cheng W T. Welding distortion of a thin-plate panel structure. Welding Journal , 1999, 156s–165s
25 Michailov V, Doynov N, . Advanced analytical-numerical approach for simulation of welding distortions. Journal of Materials Science and Technology , 2007, 15(3): 139–150
26 Rykalin N N. Berechnung von W?rmevorg?ngen beim Schwei?en. Berlin: VEB Verlag Technik, 1957 (in German)
27 Stapelfeld C, Kloshek A, Doynov N, . Analytisches Schrumpfkraftmodell und Berechnungsprogramm zur Bestimmung des schwei?bedingten Verzugs. DVS-Berichte , 2008, 250: 401–405 (in German)
[1] De-An DENG, . Theoretical prediction of welding distortion in large and complex structures[J]. Front. Mater. Sci., 2010, 4(2): 202-209.
[2] De-jun YAN, Xue-song LIU, Huan-yu XU, Jian-guo YANG, Hong-yuan FANG, Jing-yang LU. Welding distortion control of automobile engine stator by finite element method[J]. Front Mater Sci Chin, 2009, 3(1): 71-74.
[3] DENG Xiangyun, LI Dejun, WANG Xiaohui, LI Longtu. Electronic structure of nanograin barium titanate ceramics[J]. Front. Mater. Sci., 2007, 1(3): 316-318.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed