Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci    2012, Vol. 6 Issue (2) : 128-141    https://doi.org/10.1007/s11706-012-0167-3
REVIEW ARTICLE
Sol–gel auto-combustion synthesis of spinel-type ferrite nanomaterials
Andris SUTKA, Gundars MEZINSKIS()
Department of Silicate, High Temperature and Inorganic Nanomaterials Technology, Institute of Silicate Materials, Riga Technical University, 14/24 Azenes Str., Riga, LV-1048, Latvia
 Download: PDF(896 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Recent developments and trends of sol–gel auto-combustion method for spinel ferrite nanomaterial synthesis are briefly discussed and critically analyzed. The analysis of various parameters of reaction which could be used for better understanding of synthesis process and control of microstructure and property of spinel ferrite nanopowder products was the main objective of this review article. Special attention was paid to variety of particle size and phase purity. For these purposes the correlation between complexant, oxygen balance and combustion process chemical additives, as well as heating mechanism and atmosphere, was established. These results are relevant from standpoints of both application and processing of ferrites.

Keywords ferrite      synthesis      sol–gel      auto-combustion      nanomaterial     
Corresponding Author(s): MEZINSKIS Gundars,Email:gundarsm@ktf.rtu.lv   
Issue Date: 05 June 2012
 Cite this article:   
Andris SUTKA,Gundars MEZINSKIS. Sol–gel auto-combustion synthesis of spinel-type ferrite nanomaterials[J]. Front Mater Sci, 2012, 6(2): 128-141.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-012-0167-3
https://academic.hep.com.cn/foms/EN/Y2012/V6/I2/128
Fig.1  Schematic representation of spinel structure.
Fig.2  Number of papers on sol–gel auto-combustion method to synthesize nanosized ferrite powders published per year (data summarized from database).
Fig.3  Combustion reaction of reactant mixture. (Reproduced with permission from Ref. [], Copyright 2005 Elsevier)
Fig.4  SEM images of the sample powders after auto-combustion amplified 500, 5000, 8000, and 10,000, respectively. (Reproduced with permission from Ref. [], Copyright 2006 Elsevier)
Fig.5  Flow chart of processing steps.
Fig.6  Schematic diagram of the combustion synthesis device: reactant mixture (A); porcelain crucible (B); thermocouple (C); hot-plate (D). (Reproduced with permission from Ref. [], Copyright 2005 Elsevier)
Complexant transferred phenomenaInfluence on obtainable products
Complexation abilityStoichiometry of spinel ferrite compounds
Combustion flame temperatureParticle size, crystallinity and phase purity
Amount of gases generatedParticle growth, agglomeration and segregation
Tab.1  Complexant influence on obtainable spinel ferrite products
ComplexantStructural formulaMolecular weightTotal valenceDecomposition temperature
Citric acid192.12+18175°C
Urea60.06+6135°C
Glycine75.07+9262°C
Hydrazine32.05+4250°C
Ethylene glycol62.07+10163°C
Carbohydrazide90.08+8153°C
Alanine89.09+15314°C
Acetic acid60.05+8400°C
Acrylic acid72.06+12440°C
Tab.2  List of fuels used for spinel ferrite synthesis by sol–gel auto-combustion
Fig.16  SEM images showing the morphology of the powder of urea and glycine. (Reproduced with permission from Ref. [], Copyright 2010 Elsevier)
Fig.17  SEM images of dried gels prepared from solutions with pH values of 2, 3, 4, 5, 6, and 7. (Reproduced with permission from Ref. [], Copyright 2004 Elsevier)
Fig.18  Transmission electron microscopy images of the powders synthesized by combustion reaction with two different heating conditions: in muffle; on plate. (Reproduced with permission from Ref. [], Copyright 2002 Springer Netherlands)
Fig.19  Schematic diagrams showing the gas sensor sample based on 1D structures and nanoparticles. (Reproduced with permission from Ref. [], Copyright 2007 Elsevier)
Fig.20  SEM images of a NiFeO fine fibre and the surface morphology of the NiFeO fibre. (Reproduced with permission from Ref. [], Copyright 2007 Springer Netherlands)
1 Chavan S M, Babrekar M K, More S S, . Structural and optical properties of nanocrystalline Ni–Zn ferrite thin films. Journal of Alloys and Compounds , 2010, 507(1): 21-25
2 Adam J D, Davis L E, Dionne G F, . Ferrite devices and materials. IEEE Transactions on Microwave Theory and Techniques , 2002, 50(3): 721-737
3 Kulikowski J. Soft magnetic ferrites - development or stagnation? Journal of Magnetism and Magnetic Materials , 1984, 41(1-3): 56-62
4 Harris V G, Geiler A, Chen Y, . Recent advances in processing and applications of microwave ferrites. Journal of Magnetism and Magnetic Materials , 2009, 321(14): 2035-2047
5 Qu Y, Yang H, Yang N, . The effect of reaction temperature on the particle size, structure and magnetic properties of coprecipitated CoFe2O4 nanoparticles. Materials Letters , 2006, 60(29-30): 3548-3552
6 Kasapoglu N, Birsoz B, Baykal A, . Synthesis and magnetic properties of octahedral ferrite NixCo1-xFe2O4 nanocrystals. Central European Journal of Chemistry , 2007, 5(2): 570-580
7 Cao S W, Zhu Y J, Cheng G F, . ZnFe2O4 nanoparticles: microwave-hydrothermal ionic liquid synthesis and photocatalytic property over phenol. Journal of Hazardous Materials , 2009, 171(1-3): 431-435
8 Liu Y-L, Liu Z-M, Yang Y, . Simple synthesis of MgFe2O4 nanoparticles as gas sensing materials. Sensors and Actuators B: Chemical , 2005, 107(2): 600-604
9 Ahmed T T, Rahman I Z, Rahman M A. Study on the properties of the copper substituted NiZn ferrites. Journal of Materials Processing Technology , 2004, 153-154: 797-803
10 Valenzuela R.Magnetic Ceramics. 1st ed. Melbourne: Cambridge University Press, 3-23
11 Mouallem-Bahout M, Bertrand S, Pena O. Synthesis and characterization of ZnxNi1-xFe2O4 spinels prepared by citrate precursor. Journal of Solid State Chemistry , 2005, 178(4): 1080-1086
12 Gul I H, Ahmed W, Maqsood A. Electrical and magnetic characterization of nanocrystalline Ni–Zn ferrite synthesis by co-precipitation route. Journal of Magnetism and Magnetic Materials , 2008, 320(3-4): 270-275
13 Zahi S, Hashim M, Daud A R. Synthesis, magnetic properties and microstructure of Ni–Zn ferrite by sol–gel technique. Journal of Magnetism and Magnetic Materials , 2007, 308(2): 177-182
14 Ko?ak A, Makovec D, ?nidar?i? A, . Preparation of MnZn-ferrite with microemulsion technique. Journal of the European Ceramic Society , 2004, 24(6): 959-962
15 Jiao X, Chen D, Hu Y. Hydrothermal synthesis of nanocrystalline Mx(Zn1-x)Fe2O4 (M= Ni, Mn, Co; x = 0.40-0.60) powders. Materials Research Bulletin , 2002, 37(9): 1583-1588
16 Takayama A, Okuya M, Kaneko S. Spray pyrolysis deposition of NiZn ferrite thin films. Solid State Ionics , 2004, 172(1-4): 257-260
17 Thakur S, Katyal S C, Singh M. Structural and magnetic properties of nano nickel–zinc ferrite synthesized by reverse micelle technique. Journal of Magnetism and Magnetic Materials , 2009, 321(1): 1-7
18 Sarangi P P, Vadera S R, Patra M K, . Synthesis and characterization of pure single phase Ni–Zn ferrite nanopowders by oxalate based precursor method. Powder Technology , 2010, 203(2): 348-353
19 Balaji S, Kalai Selvan K, John Berchmans L, . Combustion synthesis and characterization of Sn4+ substituted nanocrystalline NiFe2O4. Materials Science and Engineering B , 2005, 119(2): 119-124
20 Aruna S T, Mukasyan A S. Combustion synthesis and nanomaterials. Current Opinion in Solid State and Materials Science , 2008, 12(3-4): 44-50
21 Randhawa B S, Dosanjh H S, Kumar N. Synthesis of lithium ferrite by precursor and combustion methods: A comparative study. Journal of Radioanalytical and Nuclear Chemistry , 2007, 274(3): 581-591
22 Lee S-P, Chen Y-J, Ho C-M, . A study on synthesis and characterization of the core–shell materials of Mn1-xZnxFe2O4–polyaniline. Materials Science and Engineering B , 2007, 143(1-3): 1-6
23 Sutka A, Mezinskis G, Pludons A, . Characterization of sol–gel auto-combustion derived spinel ferrite nano-materials. Power Engineering , 2010, 56(3-4): 254-259
24 Sutka A, Gross K A, Mezinskis G, . The effect of heating conditions on the properties of nano- and microstructured Ni–Zn ferrite. Physica Scripta , 2011, 83(2): 025601 (6 pages)
25 Thant A A, Srimala S, Kaung P, . Low temperature synthesis of MgFe2O4 soft ferrite nanocrystallites. Journal of the Australian Ceramic Society , 2010, 46(1): 11-14
26 Nayak P K. Synthesis and characterization of cadmium ferrite. Materials Chemistry and Physics , 2008, 112(1): 24-26
27 Shobana M K, Rajendran V, Jeyasubramanian K, . Preparation and characterisation of NiCo ferrite nanoparticles. Materials Letters , 2007, 61(13): 2616-2619
28 Mallapur M M, Shaikh P A, Kambale R C, . Structural and electrical properties of nanocrystalline cobalt substituted nickel zinc ferrite. Journal of Alloys and Compounds , 2009, 479(1-2): 797-802
29 Yue Z, Zhou J, Li L, . Effect of copper on the electromagnetic properties of Mg–Zn–Cu ferrites prepared by sol–gel auto-combustion method. Materials Science and Engineering B , 2001, 86(1): 64-69
30 Azadmanjiri J, Salehani H K, Barati M R, . Preparation and electromagnetic properties of Ni1-xCuxFe2O4 nanoparticle ferrites by sol–gel auto-combustion method. Materials Letters , 2007, 61(1): 84-87
31 Yue Z, Zhou J, Li L, . Synthesis of nanocrystalline NiCuZn ferrite powders by sol–gel auto-combustion method. Journal of Magnetism and Magnetic Materials , 2000, 208(1-2): 55-60
32 Selvan R K, Augustin C O, Berchmans L J, . Combustion synthesis of CuFe2O4. Materials Research Bulletin , 2003, 38(1): 41-54
33 Guo L, Shen X, Meng X, . Effect of Sm3+ ions doping on structure and magnetic properties of nanocrystalline NiFe2O4 fibers. Journal of Alloys and Compounds , 2010, 490(1-2): 301-306
34 Gupta N, Verma A, Kashyap S C, . Dielectric behavior of spin-deposited nanocrystalline nickel–zinc ferrite thin films processed by citrate-route. Solid State Communications , 2005, 134(10): 689-694
35 Azadmanjiri J. Structural and electromagnetic properties of Ni–Zn ferrites prepared by sol–gel combustion method. Materials Chemistry and Physics , 2008, 109(1): 109-112
36 de Biasi R S, Figueiredo A B S, Fernandes A A R, . Synthesis of cobalt ferrite nanoparticles using combustion waves. Solid State Communications , 2007, 144(1-2): 15-17
37 Shukla R, Ningthoujam R S, Umare S S, . Decrease of superparamagnetic fraction at room temperature in ultrafine CoFe2O4 particles by Ag doping. Hyperfine Interactions , 2008, 184(1-3): 217-225
38 Aphesteguy J C, Damiani A, DiGiovanni D, . Microwave-absorbing characteristics of epoxy resin composites containing nanoparticles of NiZn- and NiCuZn-ferrites. Physica B: Condensed Matter , 2009, 404(18): 2713-2716
39 Atif M, Nadeem M, Grossinger R, . Studies on the magnetic, magnetostrictive and electrical properties of sol–gel synthesized Zn doped nickel ferrite. Journal of Alloys and Compounds , 2011, 509(18): 5720-5724
40 Sutka A, Stingaciu M, Mezinskis G, . An alternative method to modify the sensitivity of p-type NiFe2O4 gas sensor. Journal of Materials Science , 2012, 47(6): 2856-2863
41 Doroftei C, Rezlescu E, Rezlescu N, . Microstructure and humidity sensitive properties of MgFe2O4 ferrite with Sn and Mo substitutions prepared by selfcombustion method. Journal of Optoelectronics and Advanced Materials , 2006, 8(3): 1012-1015
42 Costa A C F M, Lula R T, Kiminami R H G A, . Preparation of nanostructured NiFe2O4 catalysts by combustion reaction. Journal of Materials Science , 2006, 41(15): 4871-4875
43 Guo X, Qi Y, Li X, . Preparation, characteization and photocatlytic properties of nanometer zinc ferrite. Journal of University of Science and Technology Beijing , 2004, 11(5): 474-476
44 Airimioaei M, Ciomaga C E, Apostolescu N, . Synthesis and functional properties of the Ni1-xMnxFe2O4 ferrites. Journal of Alloys and Compounds , 2011, 509(31): 8065-8072
45 Hwang C-C, Tsai J-S, Huang T-H, . Combustion synthesis of Ni–Zn ferrite powder - influence of oxygen balance value. Journal of Solid State Chemistry , 2005, 178(1): 382-389
46 Costa A C F M, Morelli M R, Kiminami R H G A. Combustion synthesis: Effect of urea on the reaction and characteristics of Ni–Zn ferrite powders. Journal of Materials Synthesis and Processing , 2001, 9(6): 347-352
47 Mangalaraja R V, Ananthakumar S, Manohar P, . Initial permeability studies of Ni–Zn ferrites prepared by flash combustion technique. Materials Science and Engineering A , 2003, 355(1-2): 320-324
48 Mangalaraja R V, Ananthakmar S, Manohar P, . Characterization of Mn0.8Zn0.2Fe2O4 synthesized by flash combustion technique. Materials Science and Engineering A , 2004, 367(1-2): 301-305
49 Sertkol M, Kōseoglu Y, Baykal A, . Synthesis and magnetic characterization of Zn0.7Ni0.3Fe2O4 nano particles via microwave-assisted combustion route. Journal of Magnetism and Magnetic Materials , 2010, 322(7): 866-871
50 Yu L, Cao S, Liu Y, . Thermal and structural analysis on the nanocrystalline NiCuZn ferrite synthesis in different atmospheres. Journal of Magnetism and Magnetic Materials , 2006, 301(1): 100-106
51 Wu K H, Ting T H, Li M C, . Sol–gel auto-combustion synthesis of SiO2-doped NiZn ferrite by using various fuels. Journal of Magnetism and Magnetic Materials , 2006, 298(1): 25-32
52 Hwang C-C, Tsai J-S, Huang T-H. Combustion synthesis of Ni–Zn ferrite by using glycine and metal nitrates - investigations of precursor homogeneity, product reproducibility, and reaction mechanism. Materials Chemistry and Physics , 2005, 93(2-3): 330-336
53 Costa A C F M, Morelli M R, Kiminami R H G A. Microstructure and magnetic properties of Ni1-xZnxFe2O4 synthesized by combustion reaction. Journal of Materials Science , 2007, 42(3): 779-783
54 George M, mary John A, Nair S S, . Finite size effects on the structural and magnetic properties of sol–gel synthesized NiFe2O4 powders. Journal of Magnetism and Magnetic Materials , 2006, 302(1): 190-195
55 Mukasyan A S, Epstein P, Dinka P. Solution combustion synthesis of nanomaterials. Proceedings of the Combustion Institute , 2007, 31(2): 1789-1795
56 Patil J Y, Khandekar M S, Mulla I S, . Combustion synthesis of magnesium ferrite as liquid petroleum gas (LPG) sensor: Effect of sintering temperature. Current Applied Physics , 2012, 12(1): 319-324
57 Hwang C C, Wu T Y, Wan J, . Development of a novel combustion synthesis method for synthesizing of ceramic oxide powders. Materials Science and Engineering B , 2004, 111(1): 49-56
58 Wu K H, Ting T H, Yang C C, . Effect of complexant/fuel on the chemical and electromagnetic properties of SiO2-doped Ni–Zn ferrite. Materials Science and Engineering B , 2005, 123(3): 227-233
59 Hu P, Pan D, Wang X F, . Fuel additives and heat treatment effects on nanocrystalline zinc ferrite phase composition. Journal of Magnetism and Magnetic Materials , 2011, 323(5): 569-573
60 Costa A C F M, Silva V J, Xin C C, . Effect of urea and glycine fuels on the combustion reaction synthesis of Mn–Zn ferrites: Evaluation of morphology and magnetic properties. Journal of Alloys and Compounds , 2010, 495(2): 503-505
61 Verma S, Karande J, Patidar A, . Low-temperature synthesis of nanocrystalline powders of lithium ferrite by an autocombustion method using citric acid and glycine. Materials Letters , 2005, 59(21): 2630-2633
62 Costa A C F M, Vieira D A, Silva V J, . Synthesis of the Ni–Zn–Sm ferrites using microwaves energy. Journal of Alloys and Compounds , 2009, 483(1-2): 37-39
63 Salunkhe A B, Khot V M, Phadatare M R, . Combustion synthesis of cobalt ferrite nanoparticles - Influence of fuel to oxidizer ratio. Journal of Alloys and Compounds , 2012, 514: 91-96
64 Costa A C F M, Leite A M D, Ferreira H S, . Brown pigment of the nanopowder spinel ferrite prepared by combustion reaction. Journal of the European Ceramic Society , 2008, 28(10): 2033-2037
65 Kambale R C, Adhate N R, Chougule B K, . Magnetic and dielectric properties of mixed spinel Ni–Zn ferrites synthesized by citrate-nitrate combustion method. Journal of Alloys and Compounds , 2010, 491(1-2): 372-377
66 Qiu J, Liang L, Gu M. Nanocrystalline structure and magnetic properties of barium ferrite particles prepared via glycine as a fuel. Materials Science and Engineering A , 2005, 393(1-2): 361-365
67 Yue Z, Li L, Zhou J, . Preparation and characterization of NiCuZn ferrite nanocrystalline powders by auto-combustion of nitrate–citrate gels. Materials Science and Engineering B , 1999, 64(1): 68-72
68 Liu C, Zou B, Rondinone A J, . Chemical control of superparamagnetic properties of magnesium and cobalt spinel ferrite nanoparticles through atomic level magnetic couplings. Journal of the American Chemical Society , 2000, 122(26): 6263-6267
69 Azadmanjiri J, Seyyed Ebrahimi S A, Salehani H K. Magnetic properties of nanosize NiFe2O4 particles synthesized by sol–gel auto combustion method. Ceramics International , 2007, 33(8): 1623-1625
70 Xue H, Li Z, Wang X, . Facile synthesis of nanocrystalline zinc ferrite via self-propagating combustion method. Materials Letters , 2007, 61(2): 347-350
71 Liu J, Zhang W, Guo C, . Synthesis and magnetic properties of quasi-single domain M-type barium hexaferrite powders via sol–gel auto-combustion: Effects of pH and the ratio of citric acid to metal ions (CA/M). Journal of Alloys and Compounds , 2009, 479(1-2): 863-869
72 Waqas H, Qureshi A H. Influence of pH on nanosized Mn–Zn ferrite synthesized by sol–gel auto combustion process. Journal of Thermal Analysis and Calorimetry , 2009, 98(2): 355-360
73 Yue Z, Guo W, Zhou J, . Synthesis of nanocrystalline ferrites by sol–gel combustion process: the influence of pH value of solution. Journal of Magnetism and Magnetic Materials , 2004, 270(1-2): 216-223
74 Kapse V D, Ghosh S A, Raghuwanshi F C, . Nanocrystalline spinel Ni0.6Zn0.4Fe2O4: A novel material for H2S sensing. Materials Chemistry and Physics , 2009, 113(2-3): 638-644
75 Kadu A V, Jagtap S V, Chaudhari G N. Studies on the preparation and ethanol gas sensing properties of spinel Zn0.6Mn0.4Fe2O4 nanomaterials. Current Applied Physics , 2009, 9(6): 1246-1251
76 Vijaya Bhasker Reddy P, Ramesh B, Gopal Reddy C. Electrical conductivity and dielectric properties of zinc substituted lithium ferrites prepared by sol–gel method. Physica B: Condensed Matter , 2010, 405(7): 1852-1856
77 Sreeja V, Vijayanand S, Deka S, . Magnetic and M?ssbauer spectroscopic studies of NiZn ferrite nanoparticles synthesized by a combustion method. Hyperfine Interactions , 2008, 183(1-3): 99-107
78 Deka S, Joy P A. Characterization of nanosized NiZn ferrite powders synthesized by an autocombustion method. Materials Chemistry and Physics , 2006, 100(1): 98-101
79 Vivekanandhan S, Venkateswarlu M, Satyanarayana N. Effect of ethylene glycol on polyacrylicacid based combustion process for the synthesis of nano-crystalline nickel ferrite (NiFe2O4). Materials Letters , 2004, 58(22-23): 2717-2720
80 Wu K H, Yu C H, Chang Y C, . Effect of pH on the formation and combustion process of sol–gel auto-combustion derived NiZn ferrite/SiO2 composites. Journal of Solid State Chemistry , 2004, 177(11): 4119-4125
81 Costa A C F M, Tortella E, Morelli M R, . Effect of heating conditions during combustion synthesis on the characteristics of Ni0.5Zn0.5Fe2O4 nanopowders. Journal of Materials Science , 2002, 37(17): 3569-3572
82 Toksha B G, Shirsath S E, Patange S M, . Structural investigations and magnetic properties of cobalt ferrite nanoparticles prepared by sol–gel auto combustion method. Solid State Communications , 2008, 147(11-12): 479-483
83 Xiang J, Shen X, Meng X. Preparation of Co-substituted MnZn ferrite fibers and their magnetic properties. Materials Chemistry and Physics , 2009, 114(1): 362-366
84 Zhang G, Li C, Cheng F, . ZnFe2O4 tubes: Synthesis and application to gas sensors with high sensitivity and low-energy consumption. Sensors and Actuators B: Chemical , 2007, 120(2): 403-410
85 Xiang J, Shen X, Song F, . One-dimensional NiCuZn ferrite nanostructures: Fabrication, structure, and magnetic properties. Journal of Solid State Chemistry , 2010, 183(6): 1239-1244
86 Zhang C-Y, Shen X-Q, Zhou J-X, . Preparation of spinel ferrite NiFe2O4 fibres by organic gel-thermal decomposition process. Journal of Sol–Gel Science and Technology , 2007, 42(1): 95-100
[1] Qingyang GU, Jinyan LI, Liangshuo JI, Ruijun JU, Haibo JIN, Rongyue ZHANG. Fabrication of novel bifunctional nanohybrid based on layered rare-earth hydroxide with magnetic and fluorescent properties[J]. Front. Mater. Sci., 2020, 14(4): 488-496.
[2] Xin LIU, Xiangling REN, Longfei TAN, Wenna GUO, Zhongbing HUANG, Xianwei MENG. Preparation and enhanced properties of ZrMOF@CdTe nanoparticles with high-density quantum dots[J]. Front. Mater. Sci., 2020, 14(2): 155-162.
[3] Mengke PENG, Fenyan HU, Minting DU, Bingjie MAI, Shurong ZHENG, Peng LIU, Changhao WANG, Yashao CHEN. Hydrothermal growth of hydroxyapatite and ZnO bilayered nanoarrays on magnesium alloy surface with antibacterial activities[J]. Front. Mater. Sci., 2020, 14(1): 14-23.
[4] Pengzhang LI, Chuanjin TIAN, Wei YANG, Wenyan ZHAO, Zhe LÜ. LaNiO3 modified with Ag nanoparticles as an efficient bifunctional electrocatalyst for rechargeable zinc--air batteries[J]. Front. Mater. Sci., 2019, 13(3): 277-287.
[5] Yuqiao CHENG, Yang YANG, Chunrong NIU, Zhe FENG, Wenhui ZHAO, Shuang LU. Progress in synthesis and application of zwitterionic Gemini surfactants[J]. Front. Mater. Sci., 2019, 13(3): 242-257.
[6] Maria COROŞ, Florina POGĂCEAN, Lidia MĂGERUŞAN, Crina SOCACI, Stela PRUNEANU. A brief overview on synthesis and applications of graphene and graphene-based nanomaterials[J]. Front. Mater. Sci., 2019, 13(1): 23-32.
[7] Honghong ZOU, Lei WANG, Chenghui ZENG, Xiaolei GAO, Qingqing WANG, Shengliang ZHONG. Rare-earth coordination polymer micro/nanomaterials: Preparation, properties and applications[J]. Front. Mater. Sci., 2018, 12(4): 327-347.
[8] Mengna CHEN, Peiyuan ZENG, Yueying ZHAO, Zhen FANG. CoP nanoparticles enwrapped in N-doped carbon nanotubes for high performance lithium-ion battery anodes[J]. Front. Mater. Sci., 2018, 12(3): 214-224.
[9] Ramanathan SARASWATHY. Electrochemical capacitance of nanostructured ruthenium-doped tin oxide Sn1--xRuxO2 by the microemulsion method[J]. Front. Mater. Sci., 2017, 11(4): 385-394.
[10] V. CHELLASAMY, P. THANGADURAI. Structural and electrochemical investigations of nanostructured NiTiO3 in acidic environment[J]. Front. Mater. Sci., 2017, 11(2): 162-170.
[11] Mukesh Kumar MISHRA,Srikanta MOHARANA,Banarji BEHERA,Ram Naresh MAHALING. Surface functionalization of BiFeO3: A pathway for the enhancement of dielectric and electrical properties of poly(methyl methacrylate)--BiFeO3 composite films[J]. Front. Mater. Sci., 2017, 11(1): 82-91.
[12] Yajing ZHAO,Yan CHEN,Kepi CHEN. Improvement in synthesis of (K0.5Na0.5)NbO3 powders by Ge4+ acceptor doping[J]. Front. Mater. Sci., 2016, 10(4): 422-427.
[13] Bin ZHANG,Chen LIU,Weiping KONG,Chenze QI. Magnetic motive, ordered mesoporous carbons with partially graphitized framework and controllable surface wettability: preparation, characterization and their selective adsorption of organic pollutants in water[J]. Front. Mater. Sci., 2016, 10(2): 147-156.
[14] Guangfa WANG,Linhui GAO,Hongliang ZHU,Weijie ZHOU. Hydrothermal synthesis of blue-emitting YPO4:Yb3+ nanophosphor[J]. Front. Mater. Sci., 2016, 10(2): 197-202.
[15] Ying WANG,Hong ZHANG,Zhiyuan MA,Gaomin WANG,Zhicheng LI. Li-ion storage performance and electrochemically induced phase evolution of layer-structured Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material[J]. Front. Mater. Sci., 2016, 10(2): 187-196.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed