Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci    2012, Vol. 6 Issue (3) : 278-282    https://doi.org/10.1007/s11706-012-0174-4
COMMUNICATION
Synthesis of novel thiol-functionalized mesoporous silica nanorods and their sorbent properties on heavy metals
Xi CHEN1, Qiang CAI1(), Lin-Hao SUN1, Wei ZHANG2, Xing-Yu JIANG2
1. Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; 2. National Center for Nanoscience and Technology, Beijing 100190, China
 Download: PDF(314 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Novel thiol-functionalized mesoporous silica nanorods (MSNRs) were synthesized through a base co-condensation method, in which two organoalkoxysilanes, tetraethoxylsilane (TEOS) and bis[3-(triethoxysilyl)propyl]tetrasulfide (TESPT), were used as silica precursors simultaneously. TESPT was firstly used for both morphology control and inner surface functionalization of mesoporous silica hybrid materials. The microstructures as well as porous character of the MSNRs were characterized by means of SEM, XRD, TEM and N2 sorption measurements. Infrared spectrum analysis and heavy metal ions (Ag+ and Cd2+) adsorption measurements were carried out to confirm the functionalized framework of MSNRs.

Keywords nanocomposite      porous material      morphology control      inner surface functionalization      sorbent     
Corresponding Author(s): CAI Qiang,Email:caiqiang@mail.tsinghua.edu.cn   
Issue Date: 05 September 2012
 Cite this article:   
Xi CHEN,Qiang CAI,Lin-Hao SUN, et al. Synthesis of novel thiol-functionalized mesoporous silica nanorods and their sorbent properties on heavy metals[J]. Front Mater Sci, 2012, 6(3): 278-282.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-012-0174-4
https://academic.hep.com.cn/foms/EN/Y2012/V6/I3/278
Fig.1  The chemical structure and formula of TESPT. Scanning electron microscopy (SEM) images of rod-like morphology of MSNR and sphere-like morphology of MSNS.
Fig.2  TEM image of MSNRs. Inset: magnification image of the selected area.
Fig.3  Small-angle XRD pattern of MSNRs (samples obtained after the surfactant removed).
Fig.4  Nitrogen sorption isotherms of MSNRs. Inset: pore size distribution calculated from adsorption branch.
Fig.5  FT-IR spectra of MSNRs and MSNSs.
1 Kresge C T, Leonowicz M E, Roth W J, . Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature , 1992, 359(6397): 710-712
2 Beck J S, Vartuli J C, Roth W J, . A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society , 1992, 114(27): 10834-10843
3 Yang H, Kuperman A, Coombs N, . Synthesis of oriented films of mesoporous silica on mica. Nature , 1996, 379(6567): 703-705
4 Zhao D Y, Feng J L, Huo Q S, . Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science , 1998, 279(5350): 548-552
5 Monnier A, Schüth F, Huo Q, . Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science , 1993, 261(5126): 1299-1303
6 Huo Q S, Margolese D I, Ciesla U, . Generalized synthesis of periodic surfactant inorganic composite-materials. Nature , 1994, 368(6469): 317-321
7 Feng P Y, Bu X H, Stucky G D, . Monolithic mesoporous silica templated by microemulsion liquid crystals. Journal of the American Chemical Society , 2000, 122(5): 994-995
8 Lin H-P, Mou C-Y. Tubules-within-a-tubule hierarchical order of mesoporous molecular sieves in MCM-41. Science , 1996, 273(5276): 765-768
9 Cai Q, Luo Z-S, Pang W-Q, . Dilute solution routes to various controllable morphologies of MCM-41 silica with a basic medium. Chemistry of Materials , 2001, 13(2): 258-263
10 Cai Q, Lin W Y, Xiao F S, . The preparation of highly ordered MCM-41 with extremely low surfactant concentration. Microporous and Mesoporous Materials , 1999, 32(1-2): 1-15
11 Klichko Y, Liong M, Choi E, . Mesostructured silica for optical functionality, nanomachines, and drug delivery. Journal of the American Ceramic Society , 2009, 92(s1): S2-S10
12 Marlow F, McGehee M D, Zhao D, . Doped mesoporous silica fibers: A new laser material. Advanced Materials , 1999, 11(8): 632-636
13 Rambaud F, Vallé K, Thibaud S, . One-pot synthesis of functional helicoidal hybrid organic-inorganic nanofibers with periodically organized mesoporosity. Advanced Functional Materials , 2009, 19(18): 2896-2905
14 Liong M, Lu J, Kovochich M, . Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano , 2008, 2(5): 889-896
15 Lin H P, Mou C Y. Structural and morphological control of cationic surfactant-templated mesoporous silica. Accounts of Chemical Research , 2002, 35(11): 927-935
16 Zhao D Y, Sun J Y, Li Q Z, . Morphological control of highly ordered mesoporous silica SBA-15. Chemistry of Materials , 2000, 12(2): 275-279
17 Huh S, Wiench J W, Trewyn B G, . Tuning of particle morphology and pore properties in mesoporous silicas with multiple organic functional groups. Chemical Communications , 2003, (18): 2364-2365
18 Sing K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry , 1982, 54(11): 2201-2218
[1] Yun ZHAO, Linan YANG, Canliang MA. One-step gas-phase construction of carbon-coated Fe3O4 nanoparticle/carbon nanotube composite with enhanced electrochemical energy storage[J]. Front. Mater. Sci., 2020, 14(2): 145-154.
[2] Danhua ZHU, Qianjie ZHOU, Aiqin LIANG, Weiqiang ZHOU, Yanan CHANG, Danqin LI, Jing WU, Guo YE, Jingkun XU, Yong REN. Two-step preparation of carbon nanotubes/RuO2/polyindole ternary nanocomposites and their application as high-performance supercapacitors[J]. Front. Mater. Sci., 2020, 14(2): 109-119.
[3] Yanlin JIA, Zhiyuan MA, Zhicheng LI, Zhenli HE, Junming SHAO, Hong ZHANG. Electrochemical performances of NiO/Ni2N nanocomposite thin film as anode material for lithium ion batteries[J]. Front. Mater. Sci., 2019, 13(4): 367-374.
[4] Liuxin YANG, Zhou CHEN, Jian ZHANG, Chang-An WANG. SrTiO3/TiO2 heterostructure nanowires with enhanced electron--hole separation for efficient photocatalytic activity[J]. Front. Mater. Sci., 2019, 13(4): 342-351.
[5] Rongrong JIANG, Ming LI, Yirong YAO, Jianmin GUAN, Huanming LU. Application of BIB polishing technology in cross-section preparation of porous, layered and powder materials: A review[J]. Front. Mater. Sci., 2019, 13(2): 107-125.
[6] Wei LI, Lizhong ZHAO, Zhongwu LIU. Micromagnetic simulation on magnetic properties of Nd2Fe14B/α-Fe nanocomposites with Fe nanowires as the soft phase[J]. Front. Mater. Sci., 2018, 12(4): 348-353.
[7] M. Mohamed Jaffer SADIQ, U. Sandhya SHENOY, D. Krishna BHAT. Synthesis of BaWO4/NRGO‒g-C3N4 nanocomposites with excellent multifunctional catalytic performance via microwave approach[J]. Front. Mater. Sci., 2018, 12(3): 247-263.
[8] Madhulika SHARMA, Pranab Kishore MOHAPATRA, Dhirendra BAHADUR. Improved photocatalytic degradation of organic dye using Ag3PO4/MoS2 nanocomposite[J]. Front. Mater. Sci., 2017, 11(4): 366-374.
[9] Abdollah SABOORI, Matteo PAVESE, Claudio BADINI, Paolo FINO. Development of Al- and Cu-based nanocomposites reinforced by graphene nanoplatelets: Fabrication and characterization[J]. Front. Mater. Sci., 2017, 11(2): 171-181.
[10] Hassan Rayat AZIMI,Mahmood GHORANNEVISS,Seyed Mohammad ELAHI,Mohammad Reza MAHMOUDIAN,Farid JAMALI-SHEINI,Ramin YOUSEFI. Excellent photocatalytic performance under visible-light irradiation of ZnS/rGO nanocomposites synthesized by a green method[J]. Front. Mater. Sci., 2016, 10(4): 385-393.
[11] Minh Thi TRAN,Thi Huyen Trang NGUYEN,Quoc Trung VU,Minh Vuong NGUYEN. Properties of poly(1-naphthylamine)/Fe3O4 composites and arsenic adsorption capacity in wastewater[J]. Front. Mater. Sci., 2016, 10(1): 56-65.
[12] Michael Tanner CAMERON,Jordan A. ROGERSON,Douglas A. BLOM,Albert D. DUKES III. Quantification of the morphological transition in cadmium selenide nanocrystals as a function of reaction temperature[J]. Front. Mater. Sci., 2016, 10(1): 8-14.
[13] Oleg SMORYGO,Alexander MARUKOVICH,Vitali MIKUTSKI,Andika PRAMONO. Macrocellular vitreous carbon with the improved mechanical strength[J]. Front. Mater. Sci., 2015, 9(4): 413-417.
[14] Zai-Feng LI, Yuan WU, Fu-Tao ZHANG, Yu-Yang CAO, Shou-Peng WU, Ting WANG. Preparation and properties of poly HTBN-based urethane--urea/organo reactive montmorillonite nanocomposites[J]. Front Mater Sci, 2012, 6(4): 338-346.
[15] Jing SUN, Ling-Hao HE, Qiao-Ling ZHAO, Li-Fang CAI, Rui SONG, Yong-Mei HAO, Zhi MA, Wei HUANG. A simple and controllable nanostructure comprising non-conductive poly(vinylidene fluoride) and graphene nanosheets for supercapacitor[J]. Front Mater Sci, 2012, 6(2): 149-159.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed