Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci    2012, Vol. 6 Issue (4) : 326-337    https://doi.org/10.1007/s11706-012-0181-5
RESEARCH ARTICLE
Enhanced mechanical properties of linear segmented shape memory poly(urethane-urea) by incorporating flexible PEG400 and rigid piperazine
Xiao-Yan ZHANG, Yu-Fei MA, Yong-Gang LI, Pin-Pin WANG, Yuan-Liang WANG, Yan-Feng LUO()
Key Lab of Biorheological Science and Technology (Ministry of Education), Research Center for Bio-inspired Material Science and Engineering, College of Bioengineering, Chongqing University, Chongqing 400030, China
 Download: PDF(457 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The goal of this study is to design and synthesize a linear segmented shape memory poly(urethane-urea) (SMPUU) that possesses near-body-temperature shape memory temperature (Ttran) and enhanced mechanical properties by incorporating flexible poly(ethylene glycol) 400 (PEG400) to form poly(D,L-lactic acid)-based macrodiols (PDLLA--PEG400--PDLLA) and then rigid piperazine (PPZ) as a chain extender to form the desired SMPUUs (PEG400--PUU--PPZ). PEG400 increased Mn while maintaining a lower Tg of PDLLA--PEG400--PDLLA, which together with PPZ improved the mechanical properties of PEG400--PUU--PPZ. The obtained optimum SMPUU with enhanced mechanical properties (σy = 24.28 MPa; ?f = 698%; Uf = 181.5 MJ/m3) and a Tg of 40.62°C exhibited sound shape memory properties as well, suggesting a promising SMPUU for in vivo biomedical applications.

Keywords poly(urethane-urea)      poly(D      L-lactic acid)      poly(ethylene glycol)      piperazine      shape memory property      mechanical property     
Corresponding Author(s): LUO Yan-Feng,Email:yfluo@cqu.edu.cn   
Issue Date: 05 December 2012
 Cite this article:   
Xiao-Yan ZHANG,Yu-Fei MA,Yong-Gang LI, et al. Enhanced mechanical properties of linear segmented shape memory poly(urethane-urea) by incorporating flexible PEG400 and rigid piperazine[J]. Front Mater Sci, 2012, 6(4): 326-337.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-012-0181-5
https://academic.hep.com.cn/foms/EN/Y2012/V6/I4/326
1 Ma Z, Hong Y, Nelson D M, . Biodegradable polyurethane ureas with variable polyester or polycarbonate soft segments: effects of crystallinity, molecular weight, and composition on mechanical properties. Biomacromolecules , 2011, 12(9): 3265-3274
2 Wang Y L, Li Y G, Luo Y F, . Synthesis and characterization of a novel biodegradable thermoplastic shape memory polymer. Materials Letters , 2009, 63(3-4): 347-349
3 Chun B C, Cho T K, Chung Y C. Enhanced mechanical and shape memory properties of polyurethane block copolymers chain-extended by ethylene diamine. European Polymer Journal , 2006, 42(12): 3367-3373
4 Mondal S, Hu J L. Polyurethanes: Influence of PEG 3400 studies of shape memory property on thermoplastic segmented polyurethanes: Influence of PEG 3400. Journal Elastomers and Plastics , 2007, 39(1): 81-91
5 Bower D I. An Introduction to Polymer Physics. 1st ed. Cambridge: Cambridge University Press, 2002, 235-238
6 Lendlein A. Shape memory polymers. In: Advances in Polymer Science . Berlin Heidelberg: Springer-Verlag, 2010, 226: 6-9
7 Wang W S, Ping P, Chen X S, . Biodegradable polyurethane based on random copolymer of L-lactide and ?-caprolactone and its shape-memory property. Journal of Applied Polymer Science , 2007, 104(6): 4182-4187
8 Yang J H, Chun B C, Chung Y C, . Comparison of thermal/mechanical properties and shape memory effect of polyurethane block-copolymers with planar or bent shape of hard segment. Polymer , 2003, 44(11): 3251-3258
9 Król P, Król B. Surface free energy of polyurethane coatings with improved hydrophobicity. Colloid & Polymer Science , 2012, 290(10): 879-893
10 Zhang C Y, Luo Y F, Wang S J, . Design, synthesis and characterization of novel biodegradable macrodiols based on poly(DL-lactic acid) and poly(p-dioxanone). Chinese Chemical Letters , 2009, 20(6): 743-746
11 Luo Y F, Huang M N, Wang S J, . Design, synthesis and characterization of novel poly(urethane-urea) based on a macrodiol from poly(lactic acid) and poly(p-dioxanone). Chinese Chemical Letters , 2011, 22(2): 237-240
12 Li X H, Deng X M, Yuan M L, . In vitro degradation and release pro?les of poly-DL-lactide-poly(ethylene glycol) microspheres with entrapped proteins. Journal of Applied Polymer Science , 2000, 78(1): 140-148
13 Ruan G, Feng S-S. Preparation and characterization of poly(lactic acid)–poly(ethylene glycol)–poly(lactic acid) (PLA–PEG–PLA) microspheres for controlled release of paclitaxel. Biomaterials , 2003, 24(27): 5037-5044
14 Zhang J-Y, Beckman E J, Hu J, . Synthesis, biodegradability, and biocompatibility of lysine diisocyanate–glucose polymers. Tissue Engineering , 2002, 8(5): 771-785
15 Szycher M. Biostability of polyurethane elastomers: a critical review. Journal of Biomaterials Applications , 1988, 3(2): 297-402
16 Zheng X T, Zhou S B, Li X H, . Shape memory properties of poly(D,L-lactide)/hydroxyapatite composites. Biomaterials , 2006, 27(24): 4288-4295
17 Ruan C S, Wang Y L, Zhang M L, . Design, synthesis and characterization of novel biodegradable shape memory polymers based on poly(D,L-lactic acid) diol, hexamethylene diisocyanate and piperazine. Polymer International , 2012, 61(4): 524-530
18 Niu X F, Feng Q L, Wang M B, . Porous nano-HA/collagen/PLLA scaffold containing chitosan microspheres for controlled delivery of synthetic peptide derived from BMP-2. Journal of Controlled Release , 2009, 134(2): 111-117
19 Bayraktar H H, Morgan E F, Niebur G L, . Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. Journal of Biomechanics , 2004, 37(1): 27-35
20 Du Y J, Lemstra P J, Nijenhuis A J, . ABA type copolymers of lactide with poly(ethylene glycol), kinetic, mechanistic, and model studies. Macromolecules , 1995, 28(7): 2124-2132
21 Rashkov I, Manolova N, Li S, . Synthesis characterization, and hydrolytic degradation of PLA-PEO-PLA tri-block copolymers with short poly(L-lactic acid) chains. Macromolecules , 1996, 29(1): 50-62
22 Nijenhuis A J, Colstee E, Grijpma D W, . High molecular weight poly (L-lactide) and poly (ethylene oxide) blends: thermal characterization and physical properties. Polymer , 1996, 37(26): 5849-5857
23 Sheth M, Kumar R A, Dave V, . Biodegradable polymer blends of poly(lactic acid) and poly(ethylene glycol). Journal of Applied Polymer Science , 1997, 66(8): 1495-1505
24 Yamamoto T, Furukawa H. Relationship between molecular structure and deformation-fracture mechanism of amorphous polymers: 1 Shear yield stress. Polymer , 1995, 36(12): 2389-2392
[1] Xiang SUN, Qing-Song YAO, Yu-Chao LI, Fen ZHANG, Rong-Chang ZENG, Yu-Hong ZOU, Shuo-Qi LI. Biocorrosion resistance and biocompatibility of Mg--Al layered double hydroxide/poly(L-lactic acid) hybrid coating on magnesium alloy AZ31[J]. Front. Mater. Sci., 2020, 14(4): 426-441.
[2] Junbo LI, Junting JIANG, Biyu ZHOU, Chaohuang NIU, Wendi WANG, Wenlan WU. Synthesis of poly(ethylene glycol)-SS-poly(ε-caprolactone)-SS-poly(ethylene glycol) triblock copolymers via end-group conjugation and self-assembly for reductively responsive drug delivery[J]. Front. Mater. Sci., 2019, 13(4): 410-419.
[3] Zhicun WANG, Xiaoman HAN, Yixi WANG, Kenan MEN, Lin CUI, Jianning WU, Guihua MENG, Zhiyong LIU, Xuhong GUO. Facile preparation of low swelling, high strength, self-healing and pH-responsive hydrogels based on the triple-network structure[J]. Front. Mater. Sci., 2019, 13(1): 54-63.
[4] Feng LI, Yang LIU, Xu-Bo LI. Dynamic recrystallization behavior of AZ31 magnesium alloy processed by alternate forward extrusion[J]. Front. Mater. Sci., 2017, 11(3): 296-305.
[5] Xian-Ping WANG,Yi ZHANG,Yu XIA,Wei-Bing JIANG,Hui LIU,Wang LIU,Yun-Xia GAO,Tao ZHANG,Qian-Feng FANG. Enhanced micro-vibration sensitive high-damping capacity and mechanical strength achieved in Al matrix composites reinforced with garnet-like lithium electrolyte[J]. Front. Mater. Sci., 2017, 11(1): 75-81.
[6] Dongthanh NGUYEN,Wei WANG,Haibo LONG,Hongqiang RU. Facile and controllable preparation of mesoporous TiO2 using poly(ethylene glycol) as structure-directing agent and peroxotitanic acid as precursor[J]. Front. Mater. Sci., 2016, 10(4): 405-412.
[7] Qianli HUANG,Xujie LIU,Xing YANG,Ranran ZHANG,Zhijian SHEN,Qingling FENG. Specific heat treatment of selective laser melted Ti–6Al–4V for biomedical applications[J]. Front. Mater. Sci., 2015, 9(4): 373-381.
[8] Hui-Li DING,Tao ZHANG,Rui GAO,Xian-Ping WANG,Qian-Feng FANG,Chang-Song LIU,Jin-Ping SUO. Low-temperature mechanical and magnetic properties of the reduced activation martensitic steel[J]. Front. Mater. Sci., 2015, 9(3): 264-271.
[9] Rong SONG,De-Bao LIU,Yi-Chi LIU,Wen-Bo ZHENG,Yue ZHAO,Min-Fang CHEN. Effect of corrosion on mechanical behaviors of Mg--Zn--Zr alloy in simulated body fluid[J]. Front. Mater. Sci., 2014, 8(3): 264-270.
[10] N. RAGHAVENDRA, H. N. NARASIMHA MURTHY, M. KRISHNA, K. R. VISHNU MAHESH, R. SRIDHAR, S. FIRDOSH, G. ANGADI, S. C. SHARMA. Mechanical behavior of organo-modified Indian bentonite nanoclay fiber-reinforced plastic nanocomposites[J]. Front Mater Sci, 2013, 7(4): 396-404.
[11] Wen-Guang GUO, Zhi-Ye QIU, Han CUI, Chang-Ming WANG, Xiao-Jun ZHANG, In-Seop LEE, Yu-Qi DONG, Fu-Zhai CUI. Strength and fatigue properties of three-step sintered dense nanocrystal hydroxyapatite bioceramics[J]. Front Mater Sci, 2013, 7(2): 190-195.
[12] Chang-An WANG, Ming-Fu WANG. Thermal shock behavior of ZrB2--SiC ceramics with different quenching media[J]. Front Mater Sci, 2013, 7(2): 184-189.
[13] Shuigen HUANG, Kim VANMEENSEL, Omer VAN DER BIEST, Jozef VLEUGELS. Sintering, thermal stability and mechanical properties of ZrO2-WC composites obtained by pulsed electric current sintering[J]. Front Mater Sci, 2011, 5(1): 50-56.
[14] Chang YANG, Yun-Qing KANG, Xiao-Ming LIAO, Ya-Dong YAO, Zhong-Bing HUANG, Guang-Fu YIN, . Preparation of PLGA/β-TCP composite scaffolds with supercritical CO 2 foaming technique[J]. Front. Mater. Sci., 2010, 4(3): 314-320.
[15] San-bao LIN, Jian-ling SONG, Guang-chao MA, Chun-li YANG. Dissimilar metals TIG welding-brazing of aluminum alloy to galvanized steel[J]. Front Mater Sci Chin, 2009, 3(1): 78-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed