Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci    2012, Vol. 6 Issue (4) : 338-346    https://doi.org/10.1007/s11706-012-0185-1
RESEARCH ARTICLE
Preparation and properties of poly HTBN-based urethane--urea/organo reactive montmorillonite nanocomposites
Zai-Feng LI1(), Yuan WU1, Fu-Tao ZHANG2, Yu-Yang CAO1, Shou-Peng WU1, Ting WANG1
1. State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; 2. Oil Production Institute of Shengli Oilfield, Dongying 257001, China
 Download: PDF(610 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

With ultrasonic assistant mixing way, an intercalated mixture of polyol/organo reactive montmorillonite (ORMMT) was pretreated. The prepolymer composed MMT clay was prepared by reaction of polyol/ORMMT mixture with toluene diisocyanate (TDI). The resultant prepolymer reacted with extender (DMTDA) and then the polyurethane--urea/organo reactive montmorillonite (PUU/ORMMT) nanocomposites were obtained. The structure, morphology and properties of PUU/ORMMT nanocomposites were characterized by FT-IR, TEM, AFM, strain-stress machine, TGA, and dynamic mechanical analysis (DMA). The results showed that when the OMMT content is 3%, the PUU/ORMMT nanocomposities performed super mechanical properties. Because of the presence of ORMMT, both Tg of the soft segment and tanδ of the PUU increased, and the decomposition temperature for the first step and the second step increased respectively. TEM images showed that the organophilic MMT particles in the PUU composite exhibit a high degree of intercalation and exfoliation.

Keywords polyurethane--urea (PUU)      organo-MMT      morphology      dynamic mechanical analysis (DMA)      nanocomposite     
Corresponding Author(s): LI Zai-Feng,Email:lizfengphd@126.com   
Issue Date: 05 December 2012
 Cite this article:   
Zai-Feng LI,Yuan WU,Fu-Tao ZHANG, et al. Preparation and properties of poly HTBN-based urethane--urea/organo reactive montmorillonite nanocomposites[J]. Front Mater Sci, 2012, 6(4): 338-346.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-012-0185-1
https://academic.hep.com.cn/foms/EN/Y2012/V6/I4/338
Fig.1  FT-IR spectra of PUU/ORMMT nanocomposites with the ORMMT content of 0 wt.% (a), 3 wt.% (b), 6 wt.% (c) and 8 wt.% (d).
w(ORMMT) /wt.%σ /MPa? /%Hardness (Shore A)P.S. /%
016.84589033
219.04639135
319.45129140
415.03739130
514.23609227
814.02769320
Tab.1  Effect of the ORMMT content on the mechanical properties of HTBN–PUU
Fig.2  TGA curves of HTBN–PU/montromollite clay nanocomposites with the ORMMT content of 0%, 3%, 6%, and 8%.
Fig.3  DMA curves of HTBN-PU/montromollite nanocomposites with the ORMMT content of () 0%, 3%, and 6%.
Fig.4  TEM images of HTBN–PUU/ORMMT nanocomposites with the ORMMT content of 3%, 6%, and 8%.
Fig.5  AFM images of ORMMT/PUU nanocomposites with the ORMMT content of 3%, 6%, and 8%.
1 Zhang X, Bhuvana S, Loo L S. Characterization of layered silicate dispersion in polymer nanocomposites using Fourier transform infrared spectroscopy. Journal of Applied Polymer Science , 2012, 125(S1): E175–E180
2 Pandey P, Anbudayanidhi S, Mohanty S, . Flammability and thermal characterization of PMMA/clay nanocomposites and thermal kinetics analysis. Polymer Composites , 2012, 33(11): 2058–2071
3 Zhang X, Loo L S. Variable-temperature Fourier transform infrared studies of matrix–nanofiller interactions in amorphous polyamide/layered silicate nanocomposites. Journal of Applied Polymer Science , 2012, 126(S2): E371–E379
4 Castiello S, Coltelli M-B, Conzatti L, . Comparative study about preparation of poly(lactide)/organophilic montmorillonites nanocomposites through melt blending or ring opening polymerization methods. Journal of Applied Polymer Science , 2012, 125(S1): E413–E428
5 Salahuddin N, Abo-El-Enein S A, Selim A, . Synthesis and characterization of polyurethane–urea clay nanocomposites using montmorillonite modified by oxyethylene–oxypropylene copolymer. Polymers for Advanced Technologies , 2010, 21(8): 533–542
6 Han X-J, Huang Z-M, Huang C, . Preparation and characterization of electrospun polyurethane/inorganic-particles nanofibers. Polymer Composites , 2012, 33(11): 2045–2057
7 Khan A S, Wong F S L, McKay I J, . Structural, mechanical, and biocompatibility analyses of a novel dental restorative nanocomposite. Journal of Applied Polymer Science , 2013, 127(1): 439–447
8 Barick A K, Tripathy D K. Effect of organoclay on the morphology, mechanical, thermal, and rheological properties of organophilic montmorillonite nanoclay based thermoplastic polyurethane nanocomposites prepared by melt blending. Polymer Engineering & Science , 2010, 50(3): 484–498
9 Zilg C, Thomann R, Mülhaupt R, . Polyurethane nanocomposites containing laminated anisotropic nanoparticles derived from organophilic layered silicates. Advanced Materials , 1999, 11(1): 49–52
10 Finnigan B, Martin D, Halley P, . Morphology and properties of thermoplastic polyurethane nanocomposites incorporating hydrophilic layered silicates. Polymer , 2004, 45(7): 2249–2260
11 Mishra J K, Kim I, Ha C S. New millable polyurethane/organoclay nanocomposite: preparation, characterization and properties. Macromolecular Rapid Communications , 2003, 24(11): 671– 675
13 Ma J S, Zhang S F, Qi Z N. Synthesis and characterization of elastomeric polyurethane/clay nanocomposites. Journal of Applied Polymer Science , 2001, 82(6): 1444–1448
14 Chen T K, Tien Y I, Wei K H. Synthesis and characterization of novel segmented polyurethane/clay nanocomposite via poly(?-caprolactone)/clay. Journal of Polymer Science Part A: Polymer Chemistry , 1999, 37(13): 2225–2233
15 Chen T-K, Tien Y-I, Wei K-H. Synthesis and characterization of novel segmented polyurethane/clay nanocomposite. Polymer , 2000, 41(4): 1345–1353
16 Osman M A, Mittal V, Morbidelli M, . Polyurethane adhesive nanocomposites as gas permeation barrier. Macromolecules , 2003, 36(26): 9851–9858
18 Xia H S, Shaw S J, Song M. Relationship between mechanical properties and defoliation degree of clay in polyurethane nanocomposites. Polymer International , 2005, 54(10): 1392–1400
19 Li Z-F, Ma T, Ma X-L, . Investigation of properties for the intercalative behavior of the cationic polyether polyurethane polyelectrolyte on the MMT clay. Polymer Materials Science & Engineering , 2007, 23(1): 48–52 (in Chinese)
20 Sun B Q, Shi Z T, Li J Y, . Structure and properties of polyurethane/organic montmorillonite nanocomposites II. Effect of ultrasonic dispersion on structure and properties of polyurethane–urea/organic montmorilonite nanocomposites. China Synthetic Rubber Industry , 2008, 31(2): 148–151 (in Chinese)
21 French D M. Functionally terminated butadiene polymers. Rubber Chemistry and Technology , 1969, 42(1): 71–109
22 Li Z Y, Yang Z, Zhang Q Y. Calculation formula and synthesis for controlling the composition of hydroxy-terminated butadiene acrylonitrile cooligomer. Acta Chimica Sinica , 1999, 57(9): 1038–1042 (in Chinese)
23 Singh B, Gupta M, Randhawa A, . Hybrid polymer networks of unsaturated polyester–urethane as composite matrices for jute reinforcement. Journal of Applied Polymer Science , 2011, 122(2): 1206–1218
24 Bao J-J, Gao M-Z, Zhou H-F, . Advance on the application of atomic force microscope to polyurethane material analysis. China Elastomerics , 2006, 16(3): 53–57 (in Chinese)
25 Kojio K, Kugumiya S, Furukawa M. Atomic force microscopic study on the microphase separation of polyurethanes. Symposium of International Rubber Conference , 2004, 357 –359
[1] Yun ZHAO, Linan YANG, Canliang MA. One-step gas-phase construction of carbon-coated Fe3O4 nanoparticle/carbon nanotube composite with enhanced electrochemical energy storage[J]. Front. Mater. Sci., 2020, 14(2): 145-154.
[2] Danhua ZHU, Qianjie ZHOU, Aiqin LIANG, Weiqiang ZHOU, Yanan CHANG, Danqin LI, Jing WU, Guo YE, Jingkun XU, Yong REN. Two-step preparation of carbon nanotubes/RuO2/polyindole ternary nanocomposites and their application as high-performance supercapacitors[J]. Front. Mater. Sci., 2020, 14(2): 109-119.
[3] Wei SUN, Rui ZHAO, Tian WANG, Ke ZHAN, Zheng YANG, Bin ZHAO, Ya YAN. An approach to prepare uniform graphene oxide/aluminum composite powders by simple electrostatic interaction in water/alcohol solution[J]. Front. Mater. Sci., 2019, 13(4): 375-381.
[4] Yanlin JIA, Zhiyuan MA, Zhicheng LI, Zhenli HE, Junming SHAO, Hong ZHANG. Electrochemical performances of NiO/Ni2N nanocomposite thin film as anode material for lithium ion batteries[J]. Front. Mater. Sci., 2019, 13(4): 367-374.
[5] Liuxin YANG, Zhou CHEN, Jian ZHANG, Chang-An WANG. SrTiO3/TiO2 heterostructure nanowires with enhanced electron--hole separation for efficient photocatalytic activity[J]. Front. Mater. Sci., 2019, 13(4): 342-351.
[6] Wei LI, Lizhong ZHAO, Zhongwu LIU. Micromagnetic simulation on magnetic properties of Nd2Fe14B/α-Fe nanocomposites with Fe nanowires as the soft phase[J]. Front. Mater. Sci., 2018, 12(4): 348-353.
[7] M. Mohamed Jaffer SADIQ, U. Sandhya SHENOY, D. Krishna BHAT. Synthesis of BaWO4/NRGO‒g-C3N4 nanocomposites with excellent multifunctional catalytic performance via microwave approach[J]. Front. Mater. Sci., 2018, 12(3): 247-263.
[8] Mathew JOY, Srividhya J. IYENGAR, Jui CHAKRABORTY, Swapankumar GHOSH. Layered double hydroxide using hydrothermal treatment: morphology evolution, intercalation and release kinetics of diclofenac sodium[J]. Front. Mater. Sci., 2017, 11(4): 395-409.
[9] Madhulika SHARMA, Pranab Kishore MOHAPATRA, Dhirendra BAHADUR. Improved photocatalytic degradation of organic dye using Ag3PO4/MoS2 nanocomposite[J]. Front. Mater. Sci., 2017, 11(4): 366-374.
[10] Abdollah SABOORI, Matteo PAVESE, Claudio BADINI, Paolo FINO. Development of Al- and Cu-based nanocomposites reinforced by graphene nanoplatelets: Fabrication and characterization[J]. Front. Mater. Sci., 2017, 11(2): 171-181.
[11] Hassan Rayat AZIMI,Mahmood GHORANNEVISS,Seyed Mohammad ELAHI,Mohammad Reza MAHMOUDIAN,Farid JAMALI-SHEINI,Ramin YOUSEFI. Excellent photocatalytic performance under visible-light irradiation of ZnS/rGO nanocomposites synthesized by a green method[J]. Front. Mater. Sci., 2016, 10(4): 385-393.
[12] Minh Thi TRAN,Thi Huyen Trang NGUYEN,Quoc Trung VU,Minh Vuong NGUYEN. Properties of poly(1-naphthylamine)/Fe3O4 composites and arsenic adsorption capacity in wastewater[J]. Front. Mater. Sci., 2016, 10(1): 56-65.
[13] Michael Tanner CAMERON,Jordan A. ROGERSON,Douglas A. BLOM,Albert D. DUKES III. Quantification of the morphological transition in cadmium selenide nanocrystals as a function of reaction temperature[J]. Front. Mater. Sci., 2016, 10(1): 8-14.
[14] Xi CHEN, Qiang CAI, Lin-Hao SUN, Wei ZHANG, Xing-Yu JIANG. Synthesis of novel thiol-functionalized mesoporous silica nanorods and their sorbent properties on heavy metals[J]. Front Mater Sci, 2012, 6(3): 278-282.
[15] Jing SUN, Ling-Hao HE, Qiao-Ling ZHAO, Li-Fang CAI, Rui SONG, Yong-Mei HAO, Zhi MA, Wei HUANG. A simple and controllable nanostructure comprising non-conductive poly(vinylidene fluoride) and graphene nanosheets for supercapacitor[J]. Front Mater Sci, 2012, 6(2): 149-159.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed