Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci    2013, Vol. 7 Issue (2) : 196-201    https://doi.org/10.1007/s11706-013-0198-4
COMMUNICATION
Structural, optical and electron paramagnetic resonance studies on Cu-doped ZnO nanoparticles synthesized using a novel auto-combustion method
R. ELILARASSI(), G. CHANDRASEKARAN
Magnetism and Nanomagnetic Materials Lab, Department of Physics, School of Physical, Chemical and Applied Sciences, Pondicherry University, Puducherry 605014, India
 Download: PDF(197 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Nanocrystalline Zn1-xCuxO (x = 0, 0.02, 0.04, 0.06, 0.08) samples were synthesized by a novel auto-combustion method using glycine as the fuel material. The structural, optical and magnetic properties of the samples were characterized using XRD, SEM, photoluminescence (PL) and electron paramagnetic resonance (EPR) spectroscopies. The XRD spectra of samples reveal the hexagonal wurtzite structures of ZnO. As the copper content increases, a diffraction peak at 2θ = 39° corresponding to secondary phase of CuO ([111] crystalline face) appears when x6 mol.%. PL spectra of the samples show a strong ultraviolet (UV) emission and defect related visible emissions. Cu-doping in ZnO can effectively adjust the energy level in ZnO, which leads to red shift in the emission peak position in UV region. The EPR spectra of Cu-doped ZnO nanoparticles show a distinct and broad signal at room temperature, suggesting that it may be attributed to the exchange interactions within Cu2+ ions.

Keywords Cu-doped ZnO      auto-combustion      luminescence      electron paramagnetic resonance (EPR)     
Corresponding Author(s): ELILARASSI R.,Email:ezhil1984_r@yahoo.co.uk   
Issue Date: 05 June 2013
 Cite this article:   
R. ELILARASSI,G. CHANDRASEKARAN. Structural, optical and electron paramagnetic resonance studies on Cu-doped ZnO nanoparticles synthesized using a novel auto-combustion method[J]. Front Mater Sci, 2013, 7(2): 196-201.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-013-0198-4
https://academic.hep.com.cn/foms/EN/Y2013/V7/I2/196
Fig.1  A schematic diagram of the auto-combustion method.
Fig.2  XRD patterns of Cu-doped ZnO nanoparticles annealed at 500°C.
Copper concentration, xParticle size /nmLattice parameters
a /?c /?
0.0246.973.2527±0.00175.2096±0.0005
0.0443.143.2545±0.00355.2128±0.0008
0.0639.053.2509±0.00205.2087±0.0006
0.0822.213.2531±0.00325.2136±0.0009
Tab.1  Particle size and lattice parameters of Cu-doped ZnO samples annealed at 500°C
Fig.3  SEM image of the Cu-doped ZnO sample ZnCuO annealed at 500°C.
Fig.4  PL spectra of Cu-doped ZnO nanoparticles annealed at 500°C.
Fig.5  EPR spectra of Cu-doped ZnO nanoparticles annealed at 500°C.
Copper concentration, xg-valueLinewidth, GSpin–spin relaxation time, t /(10-10 s)
0.022.296836.3750.774
0.042.289537.5000.764
0.062.287138.1250.752
0.082.284740.0000.717
Tab.2  EPR parameters of Cu-doped ZnO nanoparticles annealed at 500°C
1 Norris D J, Yao N, Charnock F T, . High-quality manganese-doped ZnSe nanocrystals. Nano Letters , 2001, 1(1): 3-7
2 Zhang Q X, Yu K, Bai W, . Synthesis, optical and field emission properties of three different ZnO nanostructures. Materials Letters , 2007, 61(18): 3890-3892
3 Lieber C M. One-dimensional nanostructures: Chemistry, physics & applications. Solid State Communications , 1998, 107(11): 607-616
4 Ryu Y, Lee T-S, Lubguban J A, . Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes. Applied Physics Letters , 2006, 88(24): 241108 (3 pages)
5 Law M, Greene L E, Johnson J C, . Nanowire dye-sensitized solar cells. Nature Materials , 2005, 4(6): 455-459
6 Sima M, Enculescu I, Sima M, . ZnO:Mn:Cu nanowires prepared by template method. physica status solidi (b) , 2007, 244(5): 1522-1527
7 Wang Y S, Thomas P J, O’Brien P. Optical properties of ZnO nanocrystals doped with Cd, Mg, Mn, and Fe ions. The Journal of Physical Chemistry B , 2006, 110(43): 21412-21415
8 Park Y R, Choi S L, Lee J H, . Ferromagnetic properties of Ni-doped rutile TiO2-δ. Journal of the Korean Physical Society , 2007, 50(3): 638-642
9 LiuC, Yun F, Morko? H. Ferromagnetism of ZnO and GaN: A review. Journal of Materials Science: Materials in Electronics , 2005, 16(9) 555-597
10 Huang L M, Rosa A L, Ahuja R. Ferromagnetism in Cu-doped ZnO from first-principles theory. Physical Review B: Condensed Matter and Materials Physics , 2006, 74(7): 075206 (6 pages)
11 Bhargava R N, Chhabra V, Som T, . Quantum confined atoms of doped ZnO nanocrystals. physica status solidi (b) , 2002, 229(2): 897-901
12 Chakraborti D, Ramachandran S, Trichy G, . Magnetic, electrical, and microstructural characterization of ZnO thin films codoped with Co and Cu. Journal of Applied Physics , 2007, 101(5): 053918 (7 pages)
13 Ni Y H, Cao X F, Wu G G, . Preparation, characterization and property study of zinc oxide nanoparticles via a simple solution-combusting method. Nanotechnology , 2007, 18(15): 155603 (4 pages)
14 Jimenez-Gonzalez A E. Modification of ZnO thin films by Ni, Cu, and Cd doping. Journal of Solid State Chemistry , 1997, 128(2): 176-180
15 Lee H-J, Kim B-S, Cho C R, . A study of magnetic and optical properties of Cu-doped ZnO. physica status solidi (b) , 2004, 241(7): 1533-1536
16 Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography , 1976, 32: 751-767
17 Wang H, Wang H B, Yang F J, . Structure and magnetic properties of Zn1-xCoxO single-crystalline nanorods synthesized by a wet chemical method. Nanotechnology , 2006, 17(17): 4312-4316
18 Li C, Fang G, Fu Q, . Effect of substrate temperature on the growth and photoluminescence properties of vertically aligned ZnO nanostructures. Journal of Crystal Growth , 2006, 292(1): 19-25
19 Sun Y, Ndifor-Angwafor N G, Riley D J, . Synthesis and photoluminescence of ultra-thin ZnO nanowire/nanotube arrays formed by hydrothermal growth. Chemical Physics Letters , 2006, 431(4-6): 352-357
20 Ryu Y R, Zhu S, Budai J D, . Optical and structural properties of ZnO films deposited on GaAs by pulsed laser deposition. Journal of Applied Physics , 2000, 88(1): 201-204
21 Chen Y, Hong K, Ko H J, . Plasma-assisted molecular-beam epitaxy of ZnO epilayers on atomically flat MgAl2O4(111) substrates. Applied Physics Letters , 2000, 76(2): 245-247
22 Wang J, Gao L. Hydrothermal synthesis and photoluminescence properties of ZnO nanowires. Solid State Communications , 2004, 132(3-4): 269-271
23 Vanheusden K, Warren W L, Seager C H, . Mechanisms behind green photoluminescence in ZnO phosphor powders. Journal of Applied Physics , 1996, 79(10): 7983-7990
24 Korsunska N O, Borkovska L V, Bulakh B M, . The influence of defect drift in external electric field on green luminescence of ZnO single crystals. Journal of Luminescence , 2003, 102-103: 733-736
25 Monticone S, Tufeu R, Kanaev A V. Complex nature of the UV and visible fluorescence of colloidal ZnO nanoparticles. The Journal of Physical Chemistry B , 1998, 102(16): 2854-2862
26 Yao B D, Chan Y F, Wang N. Formation of ZnO nanostructures by a simple way of thermal evaporation. Applied Physics Letters , 2002, 81(4): 757-759
27 Xu C X, Sun X W, Zhang X H, . Photoluminescent properties of copper-doped zinc oxide nanowires. Nanotechnology , 2004, 15(7): 856-861
28 Vlasenko L. Point defects in ZnO: Electron paramagnetic resonance study. Physica B: Condensed Matter , 2009, 404(23-24): 4774-4778
29 Liu W K, Whitaker K M, Smith A L, . Room-temperature electron spin dynamics in free-standing ZnO quantum dots. Physical Review Letters , 2007, 98(18): 186804 (4 pages)
30 Kannappan R, Mahalakshmy R, Rajendiran T M, . Magnetic, catalytic, EPR and electrochemical studies on binuclear copper(II) complexes derived from 3,4-disubstituted phenol. Journal of Chemical Sciences , 2003, 115(1): 1-14
31 Viswanatha R, Chakraborty S, Basu S, . Blue-emitting copper-doped zinc oxide nanocrystals. The Journal of Physical Chemistry B , 2006, 110(45): 22310-22312
[1] Qingyang GU, Jinyan LI, Liangshuo JI, Ruijun JU, Haibo JIN, Rongyue ZHANG. Fabrication of novel bifunctional nanohybrid based on layered rare-earth hydroxide with magnetic and fluorescent properties[J]. Front. Mater. Sci., 2020, 14(4): 488-496.
[2] Dong ZHANG, Jingxin CHEN, Chunyu DU, Bingjun ZHU, Qingru WANG, Qiang SHI, Shouxin CUI, Wenjun WANG. Enhancement of red emission assigned to inversion defects in ZnAl2O4:Cr3+ hollow spheres[J]. Front. Mater. Sci., 2020, 14(1): 73-80.
[3] Kaushik DAS, G. A. KUMAR, Leonardo MIRANDOLA, Maurizio CHIRIVA-INTERNATI, Jharna CHAUDHURI. Synthesis and characterization of lanthanide-doped sodium holmium fluoride nanoparticles for potential application in photothermal therapy[J]. Front. Mater. Sci., 2019, 13(4): 389-398.
[4] Timur Sh. ATABAEV, Anara MOLKENOVA. Upconversion optical nanomaterials applied for photocatalysis and photovoltaics: Recent advances and perspectives[J]. Front. Mater. Sci., 2019, 13(4): 335-341.
[5] Fang LIU, Xiangping JIANG, Chao CHEN, Xin NIE, Xiaokun HUANG, Yunjing CHEN, Hao HU, Chunyang SU. Structural, electrical and photoluminescence properties of Er3+-doped SrBi4Ti4O15--Bi4Ti3O12 inter-growth ceramics[J]. Front. Mater. Sci., 2019, 13(1): 99-106.
[6] Yalin JIANG,Xiangping JIANG,Chao CHEN,Yunjing CHEN,Xingan JIANG,Na TU. Photoluminescence and electrical properties of Er3+-doped Na0.5Bi4.5Ti4O15--Bi4Ti3O12 inter-growth ferroelectrics ceramics[J]. Front. Mater. Sci., 2017, 11(1): 51-58.
[7] Guangfa WANG,Linhui GAO,Hongliang ZHU,Weijie ZHOU. Hydrothermal synthesis of blue-emitting YPO4:Yb3+ nanophosphor[J]. Front. Mater. Sci., 2016, 10(2): 197-202.
[8] Xing-an JIANG,Xiang-ping JIANG,Chao CHEN,Na TU,Yun-jing CHEN,Ban-chao ZHANG. Photoluminescence and electrical properties of Eu3+-doped Na0.5Bi4.5Ti4O15-based ferroelectrics under blue light excitation[J]. Front. Mater. Sci., 2016, 10(1): 31-37.
[9] Jing LIU,Jing-Ying ZHANG,Kai LIU,Hong-Jian GAO,Xiao-Long YU,Yang CAO,Zhong-Xin LIU. Upconversion luminescent property and EPR study of NaGdF4:Yb3+/Tm3+ synthesized by the hydrothermal method[J]. Front. Mater. Sci., 2015, 9(3): 241-246.
[10] Andris SUTKA, Gundars MEZINSKIS. Sol–gel auto-combustion synthesis of spinel-type ferrite nanomaterials[J]. Front Mater Sci, 2012, 6(2): 128-141.
[11] Xin JI, Fei-Jian ZHU, Ha-Lei ZHAI, Rui-Kang TANG. The luminescent enhancement of LaPO4:Ce3+,Tb3+ nano phosphors by radial aggregation[J]. Front Mater Sci Chin, 2010, 4(4): 382-386.
[12] Juan GU, Bo YUE, Guang-Fu YIN, Xiao-Ming LIAO, Zhong-Bing HUANG, Ya-Dong YAO, Yun-Qing KANG, . A novel blue emitting phosphor NaBa 0.98 Eu 0.02 PO 4 and the improvement of its luminescence properties[J]. Front. Mater. Sci., 2010, 4(1): 90-94.
[13] Yu-quan WANG, Zheng-cao LI, Zheng-jun ZHANG. Preparation of V2O5 thin film and its optical characteristics[J]. Front Mater Sci Chin, 2009, 3(1): 44-47.
[14] WANG Hui, LEI Ming-kai. Effect of Y codoping on luminescence decays of the I level in Er-doped AlO powders prepared by a sol-gel method[J]. Front. Mater. Sci., 2008, 2(3): 286-290.
[15] JIN Chenggang, WU Xuemei, SHA Zhendong, ZHUGE Lanjian. The structure and photoluminescence properties of ZnO/SiC multilayer film on Si substrate[J]. Front. Mater. Sci., 2007, 1(2): 158-161.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed