Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci    2013, Vol. 7 Issue (4) : 370-378    https://doi.org/10.1007/s11706-013-0220-x
RESEARCH ARTICLE
The effect of calcination temperature on the capacitive properties of WO3-based electrochemical capacitors synthesized via a sol--gel method
Diah SUSANTI1(), Rizky Narendra Dwi WIBAWA1, Lucky TANANTA1, Hariyati PURWANINGSIH1, Rindang FAJARIN1, George Endri KUSUMA2
1. Materials and Metallurgical Engineering Department, Faculty of Industrial Technology, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS, Keputih, Sukolilo, Surabaya 60111, Indonesia; 2. Mechanical Engineering Department, Surabaya State Shipbuilding Polytechnic, Kampus PPNS, Jalan Teknik Kimia, ITS, Surabaya 60111, Indonesia
 Download: PDF(485 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Electrochemical capacitor (EC) is a promising energy storage device which can be hybridized with other energy conversion or energy storage devices. One type of ECs is pseudocapacitor made of metal oxides. WO3 is an inexpensive semiconductor metal oxide which has many applications. However the application of WO3 as an EC material was rarely reported. Therefore in this research EC was prepared from WO3 nanomaterial synthesized by a sol--gel process. The WO3 gel was spin-coated on graphite substrates and calcined at various temperatures of 300°C, 400°C, 500°C and 600°C for 1 h. Cyclic voltammetry (CV) measurements were used to observe the capacitive property of the WO3 samples. SEM, XRD, FTIR and Brunauer--Emmett--Teller (BET) analyses were used to characterize the material structures. WO3 calcined at 400°C was proved to have the highest capacitance of 233.63 F●?g--1 (1869 mF●?cm--2) at a scan rate of 2 mV●?s--1 in 1 mol/L H2SO4 between potentials--0.4 and 0.4 V vs. SCE. Moreover it also showed the most symmetric CV curves as the indication of a good EC. Hence WO3 calcined at 400°C is a potential candidate for EC material of pseudocapacitor type.

Keywords electrochemical capacitor (EC)      WO3 nanomaterial      sol--gel process      calcination     
Corresponding Author(s): SUSANTI Diah,Email:santiche@mat-eng.its.ac.id   
Issue Date: 05 December 2013
 Cite this article:   
Diah SUSANTI,Rizky Narendra Dwi WIBAWA,Lucky TANANTA, et al. The effect of calcination temperature on the capacitive properties of WO3-based electrochemical capacitors synthesized via a sol--gel method[J]. Front Mater Sci, 2013, 7(4): 370-378.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-013-0220-x
https://academic.hep.com.cn/foms/EN/Y2013/V7/I4/370
Fig.1  Secondary electron SEM images of WO nanomaterial coated on top of graphite substrate after calcination process at various temperatures: (a) 300°C; (b) 400°C; (c) 500°C; (d) 600°C.
Fig.2  XRD patterns of WO samples calcined at 300°C (a), 400°C (b), 500°C (c) and 600°C (d).
Fig.3  FTIR patterns of WO samples calcined at 300°C (a), 400°C (b), 500°C (c) and 600°C (d).
Calcination temperature /°CBET surface area /(m2·g-1)Sample resistance /Ω
30015.916.6
4005.816.5
5003.116.2
6001.616
Tab.1  Active surface area of WO powder and electrical resistance of WO-based electrodes
Fig.4  CV diagrams of WO samples calcined at 300°C, 400°C, 500°C and 600°C.
Calcination temperature /°CSample mass, W/(mg·cm-2)Sample surface area /cm2
3002.70.68
40080.57
5003.30.52
6001.20.73
Tab.2  Sample masses and surface areas of ECs calcined at different temperatures
Scan rate /(mV·s-1)Specific capacitance /(F·g-1)
Tcal = 300°CTcal = 400°CTcal = 500°CTcal = 600°C
213.88233.6314.131.50
514.13178.5012.751.20
1014.25132.5011.000.56
2513.5099.387.590.29
20011.0046.000.630.04
5009.7535.500.160.03
Tab.3  Specific capacitances of WO-based ECs calcined at different temperatures ()
Scan rate /(mV·s-1)Specific capacitance /(mF·cm-2)
Tcal = 300°CTcal = 400°CTcal = 500°CTcal = 600°C
237.461869.0446.611.80
538.141428.0042.081.44
1038.481060.0036.300.68
2536.45795.0425.040.35
20029.70368.002.060.05
50026.33284.000.540.03
Tab.4  Specific capacitances of WO-based ECs calcined at different temperatures ()
1 Brodd R J. Recent advances in electrochemical capacitors. Proceedings of the International Conference on Advanced Capacitors (ICAC 2007), Kyoto-Japan , 2007, 1
2 Miller J R, Simon P.Fundamentals of electrochemical capacitor design and operation. Interface , 2008, 17(1): 31-32
3 K?tz R, Carlen M. Principles and applications of electrochemical capacitors. Electrochimica Acta , 2000, 45(15-16): 2483-2498
4 Burke A F. Ultracapacitor technologies and applications in hybrid and electric vehicles. Research Report UCD-ITS-RR-09-23. University of California Davis, Institute of Transportation Studies , 2009, 1-27
5 Long J W. Opportunities of electrochemical capacitors as energy storage solutions in future navy and marine corps missions. Memorandum Report NRL/MR/6170-09-9227. Washington DC: Naval Research Laboratory, US Navy , 2009, 1-30
6 Conway B E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications . New York: Kluwer Academic/Plenum Publisher , 1999, 221
7 Zheng J P, Cygan P J, Jow T R. Hydrous ruthenium dioxide as an electrode material for electrochemical capacitors. Journal of the Electrochemical Society , 1995, 142(8): 2699-2703
8 Sugimoto W, Kizaki T, Yokoshima K, . Evaluation of the pseudocapacitance in RuO2 with a RuO2/GC thin film electrode. Electrochimica Acta , 2004, 49(2): 313-3 20
9 Hu C-C, Chen W-C, Chang K-H. How to achieve maximum utilization of hydrous ruthenium dioxide for supercapacitors. Journal of the Electrochemical Society , 2004, 151(2): A281-A290
10 Ke Y-F, Tsai D-S, Huang Y-S. Electrochemical capacitors of RuO2 nanophase grown on LiNbO3(100) and sapphire(0001) substrates. Journal of Materials Chemistry , 2005, 15(21): 2122-2127
11 Hu C-C, Chang K-H, Lin M-C, . Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Letters , 2006, 6(12): 2690-2695
12 Susanti D, Tsai D-S, Huang Y-S, . Structures and electrochemical capacitive properties of RuO2 vertical nanorods encased in hydrous RuO2. The Journal of Physical Chemistry C , 2007, 111(26): 9530-9537
13 Susanti D, Tsai D-S, Huang Y-S. Hybrid electrochemical capacitor of IrO2 nanocrystal and hydrous RuO2. Science of Advanced Materials , 2010, 2(4): 552-559
14 Trasatti S, Buzzanca G.Ruthenium dioxide: a new interesting electrode material, solid state structure and electrochemical behavior. Journal of Electroanalytical Chemistry , 1971, 29(1): 1-5
15 Yano M, Suzuki S, Miyayama M, . Electrode properties and microstructures of MnO2 nanosheet thin films as cathodes for electrochemical capacitors. Solid State Ionics , 2013, 233: 32-37
16 Engstrom A M, Doyle F M. Exploring the cycle behavior of electrodeposited vanadium oxide electrochemical capacitor electrodes in various aqueous environments. Journal of Power Sources , 2013, 228: 120-131
17 Dubal D P, Dhawale D S, Salunkhe R R, . A novel chemical synthesis of Mn3O4 thin film and its stepwise conversion into birnessite MnO2 during super capacitive studies. Journal of Electroanalytical Chemistry , 2010, 647(1): 60-65
18 Chang K-H, Hu C-C, Huang C-M, . Microwave-assisted hydrothermal synthesis of crystalline WO3-WO3·0.5H2O mixtures for pseudocapacitors of the asymmetric type. Journal of Power Sources , 2011, 196(4): 2387-2392
19 Wang S H, Chou T C, Liu C C. Nano-crystalline tungsten oxide NO2 sensor. Sensors and Actuators B: Chemical , 2003, 94(3): 343-351
20 Yan A, Xie C, Zeng D, . Synthesis, formation mechanism and sensing properties of WO3 hydrate nanowire netted-spheres. Materials Research Bulletin , 2010, 45(10): 1541-1547
21 Deepa M, Singh P, Sharma S N, . Effect of humidity on structure and electrochromic properties of sol-gel-derived tungsten oxide films. Solar Energy Materials and Solar Cells , 2006, 90(16): 2665-2682
22 Sun Y, Murphy C J, Reyes-Gil K R, . Photochemical and structural characterization of carbon-doped WO3 films prepared via spray pyrolysis. International Journal of Hydrogen Energy , 2009, 34(20): 8476-8484
23 Ozkan E, Lee S H, Liu P, . Electrochromic and optical properties of mesoporous tungsten oxide films. Solid State Ionics , 2002, 149(1-2): 139-146
24 Su L, Lu Z. All solid-state smart window of electrodeposited WO3 and TiO2 particulate film with PTREFG gel electrolyte. Journal of Physics and Chemistry of Solids , 1998, 59(8): 1175-1180
25 Susanti D, Stefanus Haryo N, Nisfu H, . Comparison of the morphology and structure of WO3 nanomaterials synthesized by a sol-gel method followed by calcination or hydrothermal treatment. Frontiers of Chemical Science and Engineering , 2012, 6(4): 371-380
26 Szilágyi I M, Madarász J, Pokol G, . Stability and controlled composition of hexagonal WO3. Chemistry of Materials , 2008, 20(12): 4116-4125
27 Ramana C V, Utsunomiya S, Ewing R C, . Structural stability and phase transitions in WO3 thin films. The Journal of Physical Chemistry B , 2006, 110(21): 10430-10435
28 Chatten R, Chadwick A V, Rougier A, . The oxygen vacancy in crystal phases of WO3. The Journal of Physical Chemistry B , 2005, 109(8): 3146-3156
29 Daniel M F, Desbat B, Lassegues J C, . Infrared and Raman study of WO3 tungsten trioxide and WO3·xH2O tungsten trioxide hydrate. Journal of Solid State Chemistry , 1987, 67(2): 235-247
30 Lister T E, Chu Y, Cullen W, . Electrochemical and X-ray scattering study of well defined RuO2 single crystal surfaces. Journal of Electroanalytical Chemistry , 2002, 524-525: 201-218
31 Granqvist C G. Electrochromic tungsten oxide films: Review of progress 1993-1998. Solar Energy Materials and Solar Cells , 2000, 60(3): 201-262
32 Kim D-J, Pyun S-I, Pyun Y-M. A study on the hydrogen intercalation into rf-magnetron sputtered amorphous WO3 film using cyclic voltammetry combined with electrochemical quartz crystal microbalance technique. Solid State Ionics , 1998, 109(1-2): 81-87
33 Dmowski W, Egami T, Swider-Lyons K E, . Local atomic structure and conduction mechanism of nanocrystalline hydrous RuO2 from X-ray scattering. The Journal of Physical Chemistry B , 2002, 106(49): 12677-12683
[1] Pengfei ZHU, Zhihao REN, Ruoxu WANG, Ming DUAN, Lisi XIE, Jing XU, Yujing TIAN. Preparation and visible photocatalytic dye degradation of Mn-TiO2/sepiolite photocatalysts[J]. Front. Mater. Sci., 2020, 14(1): 33-42.
[2] Yajun ZHENG, Liyun CAO, Gaoxuan XING, Zongquan BAI, Hongyan SHEN, Jianfeng HUANG, Zhiping ZHANG. Influence and its mechanism of temperature variation in a muffle furnace during calcination on the adsorption performance of rod-like MgO to Congo red[J]. Front. Mater. Sci., 2018, 12(3): 304-321.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed