Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci    2013, Vol. 7 Issue (4) : 350-361    https://doi.org/10.1007/s11706-013-0222-8
RESEARCH ARTICLE
Electrospinning of curcumin loaded chitosan/poly (lactic acid) nanofilm and evaluation of its medicinal characteristics
Bhaarathi DHURAI1(), Nachimuthu SARASWATHY2, Ramasamy MAHESWARAN1, Ponnusamy SETHUPATHI1, Palanisamy VANITHA1, Sukumar VIGNESHWARAN1, Venugopal RAMESHBABU1
1. Department of Textile Technology, Kumaraguru College of Technology, Coimbatore 641049, Tamilnadu, India; 2. Department of Biotechnology, Kumaraguru College of Technology, Coimbatore 641049, Tamilnadu, India
 Download: PDF(541 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The curcumin loaded chitosan/poly (lactic acid) (PLA) nanofibers were produced using electrospinning. Box-Behnken experimental design was used for the optimization of variables (–1, 0, +1 coded level) like chitosan/PLA strength (% w/v), curcumin strength (% w/v) and applied voltage (kV) to obtain uniform fiber diameter. The morphology of nanofibers was shown by SEM. Molecular interactions and the presence of each chemical compound of curcumin loaded chitosan/PLA fibers were characterized by FTIR and EDX analysis. Antioxidant, drug release and in vitro cytotoxicity tests were performed to evaluate the suitability of nanofibers that would be used for wound healing. In vivo wound healing studies on excision and incision wounds created on rat model showed significant reduction of wound area when compared to untreated. The better healing efficiency can be attributed to the presence of curcumin and chitosan.

Keywords Box-Behnken      chitosan      curcumin      electrospinning      poly (lactic acid) (PLA)     
Corresponding Author(s): DHURAI Bhaarathi,Email:bhaarathi_dhurai@yahoo.com   
Issue Date: 05 December 2013
 Cite this article:   
Bhaarathi DHURAI,Nachimuthu SARASWATHY,Ramasamy MAHESWARAN, et al. Electrospinning of curcumin loaded chitosan/poly (lactic acid) nanofilm and evaluation of its medicinal characteristics[J]. Front Mater Sci, 2013, 7(4): 350-361.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-013-0222-8
https://academic.hep.com.cn/foms/EN/Y2013/V7/I4/350
Coded levelProcess parameters
Chitosan/PLA strength,X1 /(% w/v)Curcumin strength,X2 /(% w/v)Applied voltage,X3 /kV
-14.5919
051020
15.51121
Tab.1  Process parameters at different coded levels
Sample No.Coded levelActual levelAverage fiber diameter /nm
X1X2X3Chitosan/PLA strength /(% w/v)Curcumin strength /(% w/v)Applied voltage /kV
1-1-104.592097.29
21-105.592099.61
3-1104.51120118.89
41105.5112097.53
5-10-14.51019169.11
610-15.51019116.17
7-1014.51021157.47
81015.5102187.56
90-1-15919232.28
1001-15111977.85
110-115921170.59
120115112199.38
1300051020122.39
140005102084.81
1500051020156.59
Tab.2  Box-Behnken experimental design
Fig.1  Contour plots of chitosan/PLA strength and curcumin strength on the nanofiber diameter, chitosan/PLA strength and applied voltage on the nanofiber diameter, and curcumin strength and applied voltage on the nanofiber diameter.
Fig.2  Optimization plot.
Fig.3  SEM image of optimized sample.
Fig.4  Element analysis of optimized sample.
ElementWeight percent /%
Carbon (C)55.22
Oxygen (O)34.33
Fluorine (F)10.44
Tab.3  Weight percent of each element
Fig.5  FTIR analysis of curcumin powder, chitosan/PLA nanofilm and chitosan/PLA nanofilm loaded with curcumin.
Time /minOptical density value (OD515 nm±SD)Antioxidant activity, %AA /%
Control sampleCurcumin loaded chitosan/PLA nanofilm
01.9821.741±0.0712.16
101.9591.422±0.1027.41
201.9591.318±0.0832.72
301.9481.227±0.1137.01
401.9161.177±0.1238.57
Tab.4  Antioxidant activity of curcumin loaded chitosan/PLA nanofibers ( = 3)
Fig.6  Drug release of nanofilm.
Sample No.SampleGradeReactivity
1negative control0none
2positive control4severe
3curcumin loaded chitosan/PLA nanofibers0none
Tab.5  Cytotoxicity grading of samples
Fig.7  Excision wound on rat model.
Day No.Wound size /mm2Percentage reduction /%
UntreatedCurcumin loaded chitosan/PLA nanofilmUntreatedCurcumin loaded chitosan/PLA nanofilm
0101.16±1.15112.12±10.27--
375.57±2.2773.76±8.8225.3034.22
656.30±4.2665.92±3.8444.3441.20
944.60±1.7551.62±3.5655.9253.96
1232.07±5.6034.15±9.7868.3069.54
1522.46±3.7214.91±5.1377.8086.70
1814.80±3.045.04±2.3185.3795.51
219.82±2.390.39±0.6990.3099.65
Tab.6  Percentage reduction on wound size (excision wound rat model)
SampleBreaking strength /gTensile strength /(g·mm-2)
Untreated285.50±48.382.38±0.40
Treated402.67±11.643.36±0.10
Tab.7  Effect of sample in incision wound rat model
1 Petrulyte S. Advanced textile materials and biopolymers in wound management. Danish Medical Bulletin , 2008, 55(1): 72-77
2 Suwantong O, Opanasopit P, Ruktanonchai U, . Electropun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance. Polymer , 2007, 48(26): 7546-7557
3 Dutta P K, Dutta J, Tripathi V S. Chitin and chitosan: chemistry, properties and applications. Journal of Scientific and Industrial Research , 2004, 63(1): 20-31
4 Ranajit K B, Ishita C, Kaushik B, . Turmeric and curcumin: Biological actions and medicinal applications. Current Science , 2004, 87(1): 44-53
5 Singh M, Govindarajan R, Nath V, . Antimicrobial, wound healing and antioxidant activity of Plagiochasma appendiculatum Lehm. et Lind. Journal of Ethnopharmacology , 2006, 107(1): 67-72
6 Huang Z M, Zhang Y Z, Kotaki M, . A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology , 2003, 63(15): 2223-2253
7 Gibson P, Schreuder-Gibson H, Rivin D. Transport properties of porous membranes based on electrospun nanofibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2001, 187-188: 469-481
8 Jacobs V, Patanaik A, Anandjiwala R, . Optimization of electrospinning parameters for chitosan nanofibres. Current Nanoscience , 2011, 7(3): 396-401
9 Sun Z, Zussman E, Yarin A L, . Compound core-shell polymer nanofibers by Co-electrospinning. Advanced Materials , 2003, 15(22): 1929-1932
10 McCann J T, Li D, Xia Y. Electrospinning of nanofibers with core-sheath, hollow, or porous structures. Journal of Materials Chemistry , 2005, 15(7): 735-738
11 Han J, Branford-White C J, Zhu L M. Preparation of poly(?-caprolactone)/poly(trimethylene carbonate) blend nanofibers by electrospinning. Carbohydrate Polymers , 2010, 79(1): 214-218
12 Bhardwaj N, Kundu S C. Electrospinning: a fascinating fiber fabrication technique. Biotechnology Advances , 2010, 28(3): 325-347
13 Balassa L L, Prudden J F. Application of chitin and chitosan in wound healing acceleration. In: Proceedings of the 1st International Conference on Chitin/chitosan, Cambridge, USA , 1978
14 Chainani-Wu N. Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa). The Journal of Alternative and Complementary Medicine , 2003, 9(1): 161-168
15 Merrell J G, McLaughlin S W, Tie L, . Curcumin-loaded poly(?-caprolactone) nanofibres: diabetic wound dressing with anti-oxidant and anti-inflammatory properties. Clinical and Experimental Pharmacology and Physiology , 2009, 36(12): 1149-1156
16 Thangaraju E, Srinivasan N T, Kumar R, . Fabrication of electrospun poly L-lactide and curcumin loaded poly L-lactide nanofibers for drug delivery. Fibers and Polymers , 2012, 13(7): 823-830
17 Quang D L, Mai T T T, Nguyen T T T, . A novel nanofiber Cur-loaded polylactic acid constructed by electrospinning. Advances in Natural Sciences: Nanoscience and Nanotechnology , 2013, 3(2): 025014 (4 pages)
18 Sun K, Li Z H.Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning. eXPRESS Polymer Letters , 2011, 5(4): 342-361
19 Abu B S, Saniah A K, Che H A, . Optimization of electrospinning parameters using response surface methods to enhance fiber diameter, mechanical properties and orientation of nanofibers. Journal of Applied Sciences Research , 2012, 8(5): 2510-2517
20 Jayakumar R, Prabaharan M, Sudheesh Kumar P T, . Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnology Advances , 2011, 29(3): 322-337
21 Sainuddin T, Haneefa K P M. Formulation and pharmacological evaluation of herbal gel of Pothosscandens Linn. Webmed Central Wound Healing , 2010, 1(12): WMC001344 (12 pages)
22 Radhakrishnan V V, Vijayan M S, Sambasivan M, . Haemostatic potential of chitosan. Biomedicine , 1991, 2: 3-6
[1] Weiwei FAN, Jilu WANG, Jiajun FENG, Yong WANG. Facile preparation of acid/CO2 stimuli-responsive sheddable nanoparticles based on carboxymethylated chitosan[J]. Front. Mater. Sci., 2019, 13(3): 296-304.
[2] Xin PAN, Binbin SUN, Xiumei MO. Electrospun polypyrrole-coated polycaprolactone nanoyarn nerve guidance conduits for nerve tissue engineering[J]. Front. Mater. Sci., 2018, 12(4): 438-446.
[3] Amina Ben MIHOUB, Boubakeur SAIDAT, Youssef BAL, Céline FROCHOT, Régis VANDERESSE, Samir ACHERAR. Development of new ionic gelation strategy: Towards the preparation of new monodisperse and stable hyaluronic acid/β-cyclodextrin-grafted chitosan nanoparticles as drug delivery carriers for doxorubicin[J]. Front. Mater. Sci., 2018, 12(1): 83-94.
[4] Yu WU, Liu YUAN, Nai-an SHENG, Zi-qi GU, Wen-hao FENG, Hai-yue YIN, Yosry MORSI, Xiu-mei MO. A soft tissue adhesive based on aldehyde-sodium alginate and amino-carboxymethyl chitosan preparation through the Schiff reaction[J]. Front. Mater. Sci., 2017, 11(3): 215-222.
[5] Hao WANG, Yuhan WU, Pengcheng WU, Shanshan CHEN, Xuhong GUO, Guihua MENG, Banghua PENG, Jianning WU, Zhiyong LIU. Environmentally benign chitosan as reductant and supporter for synthesis of Ag/AgCl/chitosan composites by one-step and their photocatalytic degradation performance under visible-light irradiation[J]. Front. Mater. Sci., 2017, 11(2): 130-138.
[6] Juan WANG,Binbin SUN,Muhammad Aqeel BHUTTO,Tonghe ZHU,Kui YU,Jiayu BAO,Yosry MORSI,Hany EL-HAMSHARY,Mohamed EL-NEWEHY,Xiumei MO. Fabrication and characterization of Antheraea pernyi silk fibroin-blended P(LLA-CL) nanofibrous scaffolds for peripheral nerve tissue engineering[J]. Front. Mater. Sci., 2017, 11(1): 22-32.
[7] Dong YAN,Zhong-Zheng ZHOU,Chang-Qing JIANG,Xiao-Jie CHENG,Ming KONG,Ya LIU,Chao FENG,Xi-Guang CHEN. Sodium carboxymethylation-functionalized chitosan fibers for cutaneous wound healing application[J]. Front. Mater. Sci., 2016, 10(4): 358-366.
[8] Xuran GUO,Kaile ZHANG,Mohamed EL-AASSAR,Nanping WANG,Hany EL-HAMSHARY,Mohamed EL-NEWEHY,Qiang FU,Xiumei MO. The comparison of the Wnt signaling pathway inhibitor delivered electrospun nanoyarn fabricated with two methods for the application of urethroplasty[J]. Front. Mater. Sci., 2016, 10(4): 346-357.
[9] Qilin WEI,Feiyang XU,Xingjian XU,Xue GENG,Lin YE,Aiying ZHANG,Zengguo FENG. The multifunctional wound dressing with core–shell structured fibers prepared by coaxial electrospinning[J]. Front. Mater. Sci., 2016, 10(2): 113-121.
[10] Jianchao ZHAN,Yosry MORSI,Hany EI-HAMSHARY,Salem S. AL-DEYAB,Xiumei MO. In vitro evaluation of electrospun gelatin–glutaraldehyde nanofibers[J]. Front. Mater. Sci., 2016, 10(1): 90-100.
[11] Xianshuo CAO,Jun WANG,Min LIU,Yong CHEN,Yang CAO,Xiaolong YU. Chitosan-collagen/organomontmorillonite scaffold for bone tissue engineering[J]. Front. Mater. Sci., 2015, 9(4): 405-412.
[12] Guohui SUN,Chao FENG,Ming KONG,Xiaojie CHENG,Jiaojiao BING,Guixue XIA,Zixian BAO,Hyunjin PARK,Xiguang CHEN. Development of part-dissolvable chitosan fibers with surface N-succinylation for wound care dressing[J]. Front. Mater. Sci., 2015, 9(3): 272-281.
[13] Tan WINIE,Nur Syuhada MOHD SHAHRIL. Conductivity enhancement by controlled percolation of inorganic salt in multiphase hexanoyl chitosan/polystyrene polymer blends[J]. Front. Mater. Sci., 2015, 9(2): 132-140.
[14] Peng WANG,Bin PI,Jin-Ning WANG,Xue-Song ZHU,Hui-Lin YANG. Preparation and properties of calcium sulfate bone cement incorporated with silk fibroin and Sema3A-loaded chitosan microspheres[J]. Front. Mater. Sci., 2015, 9(1): 51-65.
[15] Hui-Yun ZHOU,Pei-Pei CAO,Jie ZHAO,Zhi-Ying WANG,Jun-Bo LI,Fa-Liang ZHANG. Release behavior and kinetic evaluation of berberine hydrochloride from ethyl cellulose/chitosan microspheres[J]. Front. Mater. Sci., 2014, 8(4): 373-382.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed