Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci    2013, Vol. 7 Issue (4) : 379-386    https://doi.org/10.1007/s11706-013-0223-7
RESEARCH ARTICLE
Photoelectrochemical behaviour of CdIn2S4 films deposited by pulse electrodeposition using non-aqueous electrolyte
Chockalingam JAYANTHI1, Swaminathan DHANAPANDIAN2, Kollegal Ramakrishna MURALI3()
1. Department of Physics, Government Arts College, Dharmapuri 636705, Tamilnadu, India; 2. Department of Physics, Annamalai University, Annamalainagar 608002, Tamilnadu, India; 3. Electrochemical Materials Science Division, Central Electrochemical Research Institute, Karaikudi 630006, Tamilnadu, India
 Download: PDF(384 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

CdIn2S4 films were deposited by the pulse electrodeposition technique on tin oxide-coated glass substrates, at different duty cycles in the range of 6%--50%. The deposition potential was--0.7 V vs. saturated calomel electrode (SCE) using non-aqueous di(ethylene glycol) electrolyte. XRD analysis of the films indicated polycrystalline nature. Grain size, strain and dislocation density were evaluated from the XRD data. EDX analysis of the surface composition confirms the formation of stoichiometric CdIn2S4 films. Optical studies show a direct band-gap values in the range of 2.14--2.23 eV for the films deposited at different duty cycles. Room temperature resistivity of the films was in the range of 40--21 Ω·cm with the increase of duty cycle. Photoelectrochemical (PEC) solar cells constructed with the films deposited at 50% duty cycle and post-heat-treated at 500°C indicated open circuit voltage (Voc) of 0.595 V, short circuit current density (Jsc) of 6.20 mA·cm-2, fill factor (ff) of 0.61, efficiency (η) of 3.75%, series resistance (Rs) of 4 Ω and shunt resistance (Rsh) of 2.50 kΩ. Making use of the advantages of pulse electrodeposition it can be used to deposit nanocrystalline films which can be employed in optoelectronic and photovoltaic devices.

Keywords thin film      semiconductor      CdIn2S4      photoelectrochemical (PEC) cell     
Corresponding Author(s): MURALI Kollegal Ramakrishna,Email:muraliramkrish@gmail.com   
Issue Date: 05 December 2013
 Cite this article:   
Chockalingam JAYANTHI,Swaminathan DHANAPANDIAN,Kollegal Ramakrishna MURALI. Photoelectrochemical behaviour of CdIn2S4 films deposited by pulse electrodeposition using non-aqueous electrolyte[J]. Front Mater Sci, 2013, 7(4): 379-386.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-013-0223-7
https://academic.hep.com.cn/foms/EN/Y2013/V7/I4/379
Fig.1  XRD patterns of CdInS films deposited at different duty cycles: 6% (a); 9% (b); 15% (c); 33% (d); 50% (e).
Duty cycle /%Grain size, D /nmStrain, ?/10-4Dislocation density, δ /(1014 m-2)
6102.713.74
9162.452.12
15212.141.41
33271.410.72
50301.170.54
Tab.1  Variation of grain size, strain and dislocation density of CdInS deposited at different duty cycles
Fig.2  EDX spectrum of CdInS films deposited at 50% duty cycle.
Fig.3  XPS spectra of CdInS films deposited at 50% duty cycle.
Fig.4  Transmittance spectra of CdInS films deposited at different duty cycles of 6%, 9%, 15%, 33% and 50%.
Fig.5  () versus plots of CdInS deposited at different duty cycles of 6%, 9%, 15%, 33% and 50%.
Fig.6  Variation of room temperature resistivity with the duty cycle of CdInS films.
Fig.7  Load characteristics of CdInS photoelectrodes deposited at different duty cycles of 6%, 15% and 50% and post-heat-treated at different temperatures: 450°C (a); 475°C (b); 500°C (c); 525°C (d).
Fig.8  ln versus plot of CdInS photoelectrodes deposited at 50% duty cycle and post-heat-treated at 500°C.
Fig.9  Effect of photoetching time on photocurrent and photovoltage of CdInS photoelectrodes deposited at 50% duty cycle and post-heat-treated at 500°C.
Fig.10  Load characteristics of CdInS photoelectrodes deposited at 50% duty cycle and post-heat-treated at 500°C after photoetching for 60 s.
Duty cycle /%Voc /VJsc /(mA·cm-2)ffη /%RsRsh /kΩ
60.484.800.602.31212.60
150.5155.200.592.63142.65
500.5956.200.613.7562.50
50 (after photoetch)0.728.000.636.0042.50
Tab.2  Photovoltaic parameters of CdInS photoelectrodes deposited at different duty cycles and post-heat-treated at 500°C
1 Nakanishi H. Fundamental absorption of edge in CdIn2S4. Japanese Journal of Applied Physics , 1980, 19(1): 103–108
2 Endo S, Irie T. Transport properties of CdIn2S4 single crystals. Journal of Physics and Chemistry of Solids , 1976, 37(2): 201–209
3 Anedda A, Fortin E. Study of the band edge in CdIn2S4 by photovoltaic effect. Journal of Physics and Chemistry of Solids , 1979, 40(9): 653–656
4 Kokate A V, Asabe M R, Shelake S B, . Structural, optical and electrical studies on pulse electrodeposited CdIn2S4 thin films. Physica B: Condensed Matter , 2007, 390(1–2): 84 –90
5 Ghaemi M, Binder L. Effects of direct and pulse current on electrodeposition of manganese dioxide. Journal of Power Sources , 2002, 111(2): 248–254
6 Marlot A, Kern P, Landolt D. Pulse plating of Ni–Mo alloys from Ni-rich electrolytes. Electrochimica Acta , 2002, 48(1): 29–36
7 Bahrololoom M E, Sani R. The influence of pulse plating parameters on the hardness and wear resistance of nickel–alumina composite coatings. Surface and Coatings Technology , 2005, 192(2–3): 154–163
8 Yin K M. Duplex diffusion layer model for pulse with reverse plating. Surface and Coatings Technology , 1997, 88(1–3): 162–164
9 Hahn H, Klingler W. über die Kristallstruktur einiger tern?rer Sulfide, die sich vom Indium(III)–sulfid ableiten Mit 8 Abbildungen. Zeitschrift für anorganische und allgemeine Chemie , 1950, 263(4): 177–190 (in German)
10 Yao Q Z, Jin G, Zhou G T. Formation of hieratchical nanospheres of ZnS induced by microwave irradiation: A highlighted assembly mechanism. Materials Chemistry and Physics , 2008, 109(1): 164–168
11 Kokate A V, Asabe M R, Delekar S D, . Photoelectrochemical properties of electrochemically deposited CdIn2S4 thin films. Journal of Physics and Chemistry of Solids , 2006, 67(11): 2331–2336
12 Kundakci M, Ates A, Astam A, . Structural, optical and electrical properties of CdS, Cd0.5In0.5S and In2S3 thin films grown by SILAR method. Physica E: Low-Dimensional Systems and Nanostructures , 2008, 40(3): 600–605
13 Mangalhara J P, Thangaraj R, Agnihotri O P. Photoelectroche-mical conversion using sprayed CdSe. Bulletin of Materials Science , 1988, 10(4): 333–340
14 Peng S, Mhaisalkar S G, Ramakrishna S. Solution synthesis of CdIn2S4 nanocrystals and their photoelectrical application. Materials Letters , 2012, 79: 216–218
15 Sawant R R, Shinde S S, Bhosale C H, . Influence of substrates on photoelectrochemical performance of sprayed n-CdIn2S4 electrodes. Solar Energy , 2010, 84(7): 1208–1215
16 Zhang W, Yang H, Fu W, . Directly hydrothermal growth of CdIn2S4 nanosheet films on FTO substrates for photoelectric application. Journal of Alloys and Compounds , 2013, 561: 10–15
[1] Dong ZHANG, Jingxin CHEN, Chunyu DU, Bingjun ZHU, Qingru WANG, Qiang SHI, Shouxin CUI, Wenjun WANG. Enhancement of red emission assigned to inversion defects in ZnAl2O4:Cr3+ hollow spheres[J]. Front. Mater. Sci., 2020, 14(1): 73-80.
[2] Abhijeet OJHA,Manish THAKKER,Dinesh O. SHAH,Prachi THAREJA. Flow-directed assembly of non-spherical titania nanoparticles into superhydrophilic thin films[J]. Front. Mater. Sci., 2016, 10(1): 1-7.
[3] Xiao-Li ZHANG,Shan-Hu BAO,Yun-Chuan XIN,Xun CAO,Ping JIN. Optical switching properties of Pd--Ni thin-film top-capped switchable mirrors[J]. Front. Mater. Sci., 2015, 9(3): 227-233.
[4] Sunil Jagannath PATIL,Arun Vithal PATIL,Chandrakant Govindrao DIGHAVKAR,Kashinath Shravan THAKARE,Ratan Yadav BORASE,Sachin Jayaram NANDRE,Nishad Gopal DESHPANDE,Rajendra Ramdas AHIRE. Semiconductor metal oxide compounds based gas sensors: A literature review[J]. Front. Mater. Sci., 2015, 9(1): 14-37.
[5] Zhi-Wen CHEN, Chan-Hung SHEK, C. M. Lawrence WU, Joseph K. L. LAI. Recent research situation in tin dioxide nanomaterials: synthesis, microstructures, and properties[J]. Front Mater Sci, 2013, 7(3): 203-226.
[6] Chun-Hai YIN, Chao LIU, Dong-Yan TAO, Yi-Ping ZENG. Annealing effect on structural and magnetic properties of Tb and Cr co-implanted AlGaN[J]. Front Mater Sci, 2012, 6(4): 366-370.
[7] Junyi ZHU, Su-Huai WEI. Overcoming doping bottleneck by using surfactant and strain[J]. Front Mater Sci, 2011, 5(4): 335-341.
[8] Hong LIN, Wen-li WANG, Yi-zhu LIU, Xin LI, Jian-bao LI. New trends for solar cell development and recent progress of dye sensitized solar cells[J]. Front. Mater. Sci., 2009, 3(4): 345-352.
[9] Yu-quan WANG, Zheng-cao LI, Zheng-jun ZHANG. Preparation of V2O5 thin film and its optical characteristics[J]. Front Mater Sci Chin, 2009, 3(1): 44-47.
[10] YU Zhi-ming, FANG Mei, XIAO Zhu. Effects of enhanced nucleation on the growth and thermal performance of diamond films deposited on BeO by hot filament CVD technique[J]. Front. Mater. Sci., 2008, 2(4): 369-374.
[11] LIU Hong, PU Zhaohui, XIAO Dingquan, ZHU Jianguo, ZHU Xiaohong. The effect of different electrode structures on the dielectric properties of lanthanum-doped lead titanate ferroelectric thin films[J]. Front. Mater. Sci., 2007, 1(3): 322-325.
[12] QI Yumin, CUI Chunxiang, LIU Shuangjin, WANG Huifen, HE Yun. Fabrication and biocompatibility in vitro of potassium titanate biological thin film/titanium alloy biological composite[J]. Front. Mater. Sci., 2007, 1(3): 252-257.
[13] ZHAO Yonglin, DU Piyi, WENG Wenjian, HAN Gaorong. Effect of lead on formation and dielectric tunability of (Pbx,Sr1–x)0.85Bi0.1TiO3 thin films[J]. Front. Mater. Sci., 2007, 1(1): 59-64.
[14] LAN Wei, PENG Xingping, LIU Xueqin, HE Zhiwei, WANG Yinyue. Preparation and properties of ZnO thin films deposited by sol-gel technique[J]. Front. Mater. Sci., 2007, 1(1): 88-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed