Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci    2013, Vol. 7 Issue (4) : 396-404    https://doi.org/10.1007/s11706-013-0224-6
RESEARCH ARTICLE
Mechanical behavior of organo-modified Indian bentonite nanoclay fiber-reinforced plastic nanocomposites
N. RAGHAVENDRA1, H. N. NARASIMHA MURTHY2(), M. KRISHNA2, K. R. VISHNU MAHESH3, R. SRIDHAR2, S. FIRDOSH2, G. ANGADI2, S. C. SHARMA4
1. Center for Manufacturing and Research Technology Utilization, R. V. College Campus, Bangalore 560059, Karnataka, India; 2. Department of Mechanical Engineering, R. V. College of Engineering, Bangalore 560059, Karnataka, India; 3. Department of Chemistry, ACS College of Engineering, Bangalore 560074, Karnataka, India; 4. Tumkur University, Tumkur 572103, Karnataka, India
 Download: PDF(454 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The aim of the research was to examine the influence of organo-modified Indian bentonite (IB) nanoclay dispersed in vinylester on the mechanical properties of nanoclay/vinylester/glass nanocomposites. Nanoclay was organically modified using cationic surfactant hexadecyltrimethylammonium bromide (HDTMA--Br) by cation exchange method and dispersed in vinylester using ultrasonication and twin screw extrusion. XRD of nanoclay/vinylester revealed exfoliation at 4 wt.% nanoclay indicating uniform dispersion in the polymer. DSC results showed improvement in glass transition temperature by 22.3% in 4 wt.% nanoclay/vinylester/glass when compared with that of vinylester/glass. Nanoclay/vinylester/glass with 4 wt.% nanoclay showed 29.23%, 23.84% and 60.87% improvement in ultimate tensile strength (UTS), flexural strength (FS) and interlaminar shear strength (ILSS) respectively when compared with those of vinylester/glass. The mode of tensile failure examined by SEM showed no agglomeration of nanoclay in 4 wt.% nanoclay/vinylester/glass specimens.

Keywords Indian bentonite (IB)      ultrasonication      twin-screw extrusion      mechanical property     
Corresponding Author(s): NARASIMHA MURTHY H. N.,Email:hnmdatta@yahoo.com   
Issue Date: 05 December 2013
 Cite this article:   
N. RAGHAVENDRA,H. N. NARASIMHA MURTHY,M. KRISHNA, et al. Mechanical behavior of organo-modified Indian bentonite nanoclay fiber-reinforced plastic nanocomposites[J]. Front Mater Sci, 2013, 7(4): 396-404.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-013-0224-6
https://academic.hep.com.cn/foms/EN/Y2013/V7/I4/396
Fig.1  Schematic representation of dispersion of nanoclay in vinylester.
MaterialsSpecificationsSuppliers
IB clayBulk density: 2.8 g/ccPlatelet size: 150-250 nmd-spacing: 11 ?Ashapura Chemicals, Gujarat, India
Vinylester resin (Polyflex GR 200-65 superior)Density: 1.05 g/ccUTS: 60 MPaFS: 130 MPaHeat distortion temperature: 125°CNaphtha Resins & Chemicals (p), Bangalore, India
E-glass fiberDensity: 2.5 g/ccUTS: 3400-3500 MPaYoung’s modulus: 70-75 GPaSuntech Fibers & Polymer, Bangalore, India
Di-methyl acetamide as promoterDensity: 0.94 g/cm3Suntech Fibers & Polymer, Bangalore, India.
Cobalt napthalate as acceleratorDensity: 0.98 g/cm3
MEKP as catalystDensity: 1.17 g/cm3
Tab.1  Specifications of materials used in the research
Ultrasonicator (tip type)VPL-P2 of & dia 1”
SupplierVibronics Pvt. Ltd., Pune
Frequency37 kHz
Voltage220 V
Capacity500 mL
Power250 W
Tab.2  Specifications of ultrasonicator
Fig.2  Configuration of screw elements adopted for dispersion.
ExtruderAlpha 18
SupplierSteer Engineering, Bangalore
Barrel diameter18.8 mm
Centre distance16 mm
Screw diameter18.5 mm
L/D ratio26
Do/Di ratio1.48
Screw speed1200 r/min
Nominal torque per shaft30 N·m/shaft
Specific torque7.1 N·m/cm3
Length of barrel section1200 mm
Number of zones6
1D adaptornil
Barrel cooling mediumwater
Tab.3  Specifications of co-rotating twin-screw extruder
Fig.3  XRD patterns of IB specimens: IB clay (a), 2 wt.% IB/vinylester (b), 3 wt.% IB/vinylester (c), 4 wt.% IB/vinylester (d), and 5 wt.% IB/vinylester (e).
Fig.4  SEM images of fractured surfaces of 1 wt.% IB/vinylester/glass, 2 wt.% IB/vinylester/glass, 3 wt.% IB/vinylester/glass, 4 wt.% IB/vinylester/glass, and 5 wt.% IB/vinylester/glass.
Fig.5  DSC thermograms of vinylester (a), 2 wt.% IB/vinylester/glass (b), 3 wt.% IB/vinylester/glass (c), 4 wt.% IB/vinylester/glass (d), and 5 wt.% IB/vinylester/glass (e).
Sample codeSample detailsTg /°C
avinylester121.63
b2 wt.% IB/vinylester/glass127.69
c3 wt.% IB/vinylester/glass133.60
d4 wt.% IB/vinylester/glass148.43
e5 wt.% IB/vinylester/glass136.28
Tab.4  Glass transition temperatrure of IB/vinylester/glass based nanocomposites
Fig.6  Effect of IB (wt.%) addition to vinylester/glass on mechanical properties: UTS; FS; ILSS.
1 Ratna D, Khan S, Barman S, . Synthesis of vinylester–clay nanocomposites: influence of the nature of clay on mechanical, thermal and barrier properties. The Open Macromolecules Journal , 2012, 6: 59–67
2 Ji G, Li G.Effects of nanoclay morphology on the mechanical, thermal, and fire-retardant properties of vinyl ester based nanocomposites. Materials Science and Engineering A , 2008, 498(1-2): 327–334
3 Jeon I-Y, Baek J-B. Nanocomposites derived from polymers and inorganic nanoparticles. Materials , 2010, 3(6): 3654–3674
4 Karippal J J, Narasimha Murthy H N, Rai K S, . Effect of amine functionalization of CNF on electrical, thermal, and mechanical properties of epoxy/CNF composites. Polymer Bulletin , 2010, 65(8): 849–861
5 Karippal J J, Narasimha Murthy H N, Rai K S, . Electrical and thermal properties of twin-screw extruded multiwalled glass nanotube/epoxy composites. Journal of Materials Engineering and Performance , 2010, 19(8): 1143–1149
6 Hwang T Y, Kim H J, Ahn Y. Influence of twin screw extrusion processing condition on the properties of polypropylene/multi-walled glass nanotube nanocomposites. Korea-Australia Rheology Journal , 2010, 22(2): 141–148
7 Uddin M F, Sun C T. Effect of nanoparticle dispersion on mechanical behavior of polymer nanocomposites. In: 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference , Palm Springs, California, USA, May4-7, 2009
8 See S C, Zhang Z Y, Dhakal H N, . Nanomechanical behavior and thermal degradation of nanoclays and supernanoclays enhanced marine gelcoat system. International Journal of Materials Engineering Innovation , 2009, 1(1): 21–39
9 Zhao Z, Gou J, Bietto S, . Fire retardancy of clay/carbon nanofiber hybrid sheet in fiber reinforced polymer composites. Composites Science and Technology , 2009, 69(13): 2081–2087
10 Villmow T, Potschke P, Pegel S, . Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly(lactic acid) matrix. Polymer , 2008, 49(16): 3500–3509
11 Samyn F, Bourbigot S, Jama C, . Fire retardancy of polymer clay nanocomposites: Is there an influence of the nanomorphology? Polymer Degradation and Stability , 2008, 93(11): 2019–2024
12 Bhat G, Hegde R R, Kamath M G, . Nanoclay reinforced fibers and nonwovens. Journal of Engineered Fibers and Fabrics , 2008, 3(3): 22–34
13 Jo B-W, Park S-K, Kim D-K. Mechanical properties of nano-MMT reinforced polymer composite and polymer concrete. Construction and Building Materials , 2008, 22(1): 14–20
14 Subramaniyan A K, Sun C T. Toughening polymeric composites using nanoclay: Crack tip scale effects on fracture toughness. Composites Part A: Applied Science and Manufacturing , 2007, 38(1): 34–43
15 Wang L, Wang K, Chen L, . Preparation, morphology and thermal/mechanical properties of epoxy/nanoclay composite. Composites Part A: Applied Science and Manufacturing , 2006, 37(11): 1890–1896
16 Xu B, Zheng Q, Song Y, . Calculating barrier properties of polymer/clay nanocomposites: Effects of clay layers. Polymer , 2006, 47(8): 2904–2910
17 Yasmin A, Luo J J, Daniel I M. Processing of expanded graphite reinforced polymer nanocomposites. Composites Science and Technology , 2006, 66(9): 1182–1189
18 Ray D, Sengupta S, Sengupta S P, . Preparation and properties of vinylester resin/clay nanocomposites. Macromolecular Materials and Engineering , 2006, 291(12): 1513–1520
19 Yasmin A, Luo J J, Abot J L, . Mechanical and thermal behavior of clay/epoxy nanocomposites. Composites Science and Technology , 2006, 66(14): 2415–2422
20 Kosmidou Th V, Vatalis A S, Delides C G, . Structural, mechanical and electrical characterization of epoxy–amine/glass black nanocomposites. eXPRESS Polymer Letters , 2008, 2(5): 364–372
21 Subramaniyan A K, Sun C T. Interlaminar fracture behavior of nanoclay reinforced glass fiber composites. Journal of Composite Materials , 2008, 42(20): 2111–2122
22 Kanny K, Jawahar P, Moodley V K. Mechanical and tribulogicla behaviour of clay-polypropylene nanocomposites. Journal of Materials Science , 2008, 43(22): 7230–7238
23 Chiou B-S, Yee E, Wood D, . Effects of processing conditions on nanoclay dispersion in starch-clay nanocomposites. Cereal Chemistry , 2006, 83(3): 300–305
24 Treece M A, Oberhauser J P. Processing of polypropylene–clay nanocomposites: Single-screw extrusion with in-line supercritical carbon dioxide feed versus twin-screw extrusion. Journal of Applied Polymer Science , 2007, 103(2): 884–892
25 Sridhar R, Narasimha Murthy H N, Pattar N, . Parametric study of twin screw extrusion for dispersing MMT in vinylester using orthogonal array technique and grey relational analysis. Composites Part B: Engineering , 2012, 43(2): 599–608
26 Vishnu Mahesh K R, Narasimha Murthy H N, Kumara Swamy B E, . Mechanical, thermal and fire retardation behaviors of nanoclay/vinylester nanocomposites. Frontiers of Materials Science , 2011, 5(4): 401–411
27 Pal R, Narasimha Murthy H N, Sreejith M, . Effect of laminate thickness on moisture diffusion of polymer matrix composites in artificial seawater ageing. Frontiers of Materials Science , 2012, 6(3): 225–235
28 Herzog B, Gardner D J, Lopez-Anido R, . Glass-transition temperature based on dynamic mechanical thermal analysis techniques as an indicator of the adhesive performance of vinyl ester resin. Journal of Applied Polymer Science , 2005, 97(6): 2221–2229
[1] Zhicun WANG, Xiaoman HAN, Yixi WANG, Kenan MEN, Lin CUI, Jianning WU, Guihua MENG, Zhiyong LIU, Xuhong GUO. Facile preparation of low swelling, high strength, self-healing and pH-responsive hydrogels based on the triple-network structure[J]. Front. Mater. Sci., 2019, 13(1): 54-63.
[2] Feng LI, Yang LIU, Xu-Bo LI. Dynamic recrystallization behavior of AZ31 magnesium alloy processed by alternate forward extrusion[J]. Front. Mater. Sci., 2017, 11(3): 296-305.
[3] Xian-Ping WANG,Yi ZHANG,Yu XIA,Wei-Bing JIANG,Hui LIU,Wang LIU,Yun-Xia GAO,Tao ZHANG,Qian-Feng FANG. Enhanced micro-vibration sensitive high-damping capacity and mechanical strength achieved in Al matrix composites reinforced with garnet-like lithium electrolyte[J]. Front. Mater. Sci., 2017, 11(1): 75-81.
[4] Qianli HUANG,Xujie LIU,Xing YANG,Ranran ZHANG,Zhijian SHEN,Qingling FENG. Specific heat treatment of selective laser melted Ti–6Al–4V for biomedical applications[J]. Front. Mater. Sci., 2015, 9(4): 373-381.
[5] Hui-Li DING,Tao ZHANG,Rui GAO,Xian-Ping WANG,Qian-Feng FANG,Chang-Song LIU,Jin-Ping SUO. Low-temperature mechanical and magnetic properties of the reduced activation martensitic steel[J]. Front. Mater. Sci., 2015, 9(3): 264-271.
[6] Rong SONG,De-Bao LIU,Yi-Chi LIU,Wen-Bo ZHENG,Yue ZHAO,Min-Fang CHEN. Effect of corrosion on mechanical behaviors of Mg--Zn--Zr alloy in simulated body fluid[J]. Front. Mater. Sci., 2014, 8(3): 264-270.
[7] Wen-Guang GUO, Zhi-Ye QIU, Han CUI, Chang-Ming WANG, Xiao-Jun ZHANG, In-Seop LEE, Yu-Qi DONG, Fu-Zhai CUI. Strength and fatigue properties of three-step sintered dense nanocrystal hydroxyapatite bioceramics[J]. Front Mater Sci, 2013, 7(2): 190-195.
[8] Chang-An WANG, Ming-Fu WANG. Thermal shock behavior of ZrB2--SiC ceramics with different quenching media[J]. Front Mater Sci, 2013, 7(2): 184-189.
[9] Xiao-Yan ZHANG, Yu-Fei MA, Yong-Gang LI, Pin-Pin WANG, Yuan-Liang WANG, Yan-Feng LUO. Enhanced mechanical properties of linear segmented shape memory poly(urethane-urea) by incorporating flexible PEG400 and rigid piperazine[J]. Front Mater Sci, 2012, 6(4): 326-337.
[10] K. R. VISHNU MAHESH, H. N. NARASIMHA MURTHY, B. E. KUMARA SWAMY, S. C. SHARMA, R. SRIDHAR, Niranjan PATTAR, M. KRISHNA, B. S. SHERIGARA. Mechanical, thermal and fire retardation behaviours of nanoclay/vinylester nanocomposites[J]. Front Mater Sci, 2011, 5(4): 401-411.
[11] Shuigen HUANG, Kim VANMEENSEL, Omer VAN DER BIEST, Jozef VLEUGELS. Sintering, thermal stability and mechanical properties of ZrO2-WC composites obtained by pulsed electric current sintering[J]. Front Mater Sci, 2011, 5(1): 50-56.
[12] San-bao LIN, Jian-ling SONG, Guang-chao MA, Chun-li YANG. Dissimilar metals TIG welding-brazing of aluminum alloy to galvanized steel[J]. Front Mater Sci Chin, 2009, 3(1): 78-83.
[13] HU Weiping, CHEN Hao, ZHONG Yunlong, SONG Jia, GOTTSTEIN Günter. Investigations on NiAl composites fabricated by matrix coated single crystalline AlO-fibers with and without hBN interlayer[J]. Front. Mater. Sci., 2008, 2(2): 182-193.
[14] SUN Guoyuan, CHEN Guang, CHEN Guoliang. Enhanced plasticity of Zr-based bulk metallic glass composite by in situ formed β-Zr dendritics[J]. Front. Mater. Sci., 2007, 1(1): 114-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed