Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci    2013, Vol. 7 Issue (4) : 387-395    https://doi.org/10.1007/s11706-013-0227-3
RESEARCH ARTICLE
Effect of Sn precursor on the synthesis of SnO2 and Sb-doped SnO2 particles via polymeric precursor method
Francisco LóPEZ MORALES1, Teresa ZAYAS2, Oscar E. CONTRERAS3, Leonardo SALGADO1()
1. Department of Chemistry, Metropolitan Autonomous University- Iztapalapa, P.O. Box 55-534, C.P. 09340 México D.F., México; 2. Postgraduate in Environmental Sciences and Center of Chemistry of the Science Institute, Meritorious Autonomous University of Puebla, P.O. Box 1613, C.P. 72000 Puebla, México; 3. Center of Nanoscience and Nanotechnology, Department of Nanostructures, P.O. Box 14, C.P. 22800 Ensenada, B.C., México
 Download: PDF(453 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

SnO2 and Sb-doped SnO2 particles were synthesized using the polymeric precursor method with different Sn salt precursors: SnCl2·2H2O, SnCl4·5H2O, or Sn citrate. Sb2O3 was used as the precursor of Sb, and the molar ratio of nSn:nSb was held constant. FTIR and TGA/DTA were used to examine the influence of the Sn precursor on the formation and thermal decomposition of the Sn and Sn–Sb complexes. The calcination products obtained from heating the Sn and Sn--Sb complexes at 500°C in air were analyzed using XRD and TEM analysis. The results revealed that the SnO2 and Sb-doped SnO2 formation temperatures depended on the nature of the Sn precursor. The calcination products were found to be SnO2 and Sb-doped SnO2 particles, which crystallized in a tetragonal cassiterite structure with a highly preferred (110) planar orientation. The Sn precursor and the presence of Sb in the SnO2 matrix strongly influenced the crystallinity and lattice parameters.

Keywords SnO2 and Sb-doped SnO2      Sn precursor      Pechini method      thermal decomposition      nanoparticle     
Corresponding Author(s): SALGADO Leonardo,Email:lsj@xanum.uam.mx   
Issue Date: 05 December 2013
 Cite this article:   
Francisco LóPEZ MORALES,Teresa ZAYAS,Oscar E. CONTRERAS, et al. Effect of Sn precursor on the synthesis of SnO2 and Sb-doped SnO2 particles via polymeric precursor method[J]. Front Mater Sci, 2013, 7(4): 387-395.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-013-0227-3
https://academic.hep.com.cn/foms/EN/Y2013/V7/I4/387
Fig.1  FTIR spectra of the Sn and Sn–Sb precursor solutions prepared from different tin salts: SnCl·2HO (a); SnCl·5HO (b); tin citrate (c). Antimony precursor: SbO. The molar ratio of citric acid/ethylene glycol/metal (CA/EG/Sn) was 3/14/1, and the molar ratio of Sn/Sb was 0.95/0.05.
Fig.2  TGA and DTA curves of the Sn precursor solutions prepared from different salts: SnCl·2HO, SnCl·5HO, or tin citrate. Heating rate: 2°C/min under an air atmosphere.
PrecursorStepTemperature range /°CObserved weight loss /%
SnCl2·2H2O165-32173
2326-61415
Total weight loss88
Residual weightabove 61410
SnCl4·5H2O150-27773
2286-60418.6
Total weight loss91.6
Residual weightabove 6048.4
Tin citrate160-37172
2398-45815.7
Total weight loss87.7
Residual weightabove 458 12.3
Tab.1  Weight loss at various steps, measured from the thermal analysis of the various precursor solutions
Fig.3  TGA and DTA curves of the Sn–Sb precursor solutions prepared from different salts of Sn: SnCl·2HO, SnCl·5HO, or tin citrate. Antimony precursor: SbO. Heating rate: 2°C/min under an air atmosphere. The molar ratio of Sn/Sb was 0.95/0.05.
Fig.4  XRD patterns of the calcination products of Sn (a–c) and Sn–Sb (a′–c′) precursor solutions. With heating at 500°C for 60 min in air. Tin precursors: SnCl·2HO (a), SnCl·5HO (b), and tin citrate (c). Antimony precursor: SbO. The molar ratio of Sn/Sb was 0.95/0.05.
PrecursorLattice parameters of SnO2–Sb particles
a /? = b /?c /?Vcell /?3
4.738 a)3.188 a)71.566 a)
Tin citrate–Sb2O34.7333.21572.031
SnCl2·2H2O–Sb2O34.7233.21871.793
SnCl4·5H2O–Sb2O34.7283.21271.825
Tab.2  Lattice parameters (, and ) and unit cell volume () of Sb-doped SnO particles obtained from various tin precursors (Antimony precursor: SbO; Calcination conditions: 500°C for 1 h under an air atmosphere)
Fig.5  TEM images of SnO and Sb-doped SnO particles prepared from different precursors of Sn: SnCl·2HO, SnCl·5HO, and tin citrate. Antimony precursor: SbO. Samples were synthesized through the thermal decomposition of polymeric precursors over 60 min at 500°C under an air atmosphere.
1 Zhang H, He Q, Zhu X, . Surfactant free solution phase synthesis of monodispersed SnO2 hierarchical nanostructures and gas sensing properties. CrystEngComm , 2012, 14(9): 3169–3176
2 Wan Q, Wang T H. Single-crystalline Sb-doped SnO2 nanowires: synthesis and gas sensor application. Chemical Communications , 2005, 30(30): 3841–3843
3 Zum Felde U, Haase M, Weller H. Electrochromism of highly doped nanocrystalline SnO2:Sb. The Journal of Physical Che-mistry B , 2000, 104(40): 9388–9395
4 Wang Y, Djerdj I, Smarsly B, . Antimony-doped SnO2 nanopowders with high crystallinity for lithium-ion battery electrode. Chemistry of Materials , 2009, 21(14): 3202–3209
5 Xu C H, Sun J, Gao L. Direct growth of monodisperse SnO2 nanorods on graphene as high capacity anode materials for lithium ion batteries. Journal of Materials Chemistry , 2012, 22(3): 975–979
6 Li Z D, Zhou Y, Yu T, . Unique Zn-doped SnO2 nano-echinus with excellent electron transport and light harvesting properties as photoanode materials for high performance dye-sensitized solar cell. CrystEngComm , 2012, 14(20): 6462–6468
7 Kim Y S, Yu B K, Kim D Y, . A hybridized electron-selective layer using Sb-doped SnO2 nanowires for efficient inverted polymer solar cells. Solar Energy Materials and Solar Cells , 2011, 95(10): 2874–2879
8 Lim J, Jeong B Y, Yoon H G, . Inkjet-printing of antimony-doped tin oxide (ATO) films for transparent conducting electrodes. Journal of Nanoscience and Nanotechnology , 2012, 12(2): 1675–1678
9 Leem J W, Yu J S. Physical properties of electrically conductive Sb-doped SnO2 transparent electrodes by thermal annealing dependent structural changes for photovoltaic applications. Materials Science and Engineering B , 2011, 176(15): 1207–1212
10 Wu S S, Cao H Q, Yin S F, . Amino acid-assisted hydrothermal synthesis and photocatalysis of SnO2 nanocrystals. Journal of Physical Chemistry C , 2009, 113(41): 17893–17898
11 Wang Y, Fan C, Hua B, . Photoelectrocatalytic activity of two antimony doped SnO2 films for oxidation of phenol pollutants. Transactions of Nonferrous Metals Society of China , 2009, 19(3): 778–783
12 Paniza M. Chapter 2: Importance of electrode material in the electrochemical treatment of wastewater containing organic pollutants. In: Comninellis C, Chen G, eds. Electrochemistry for the Environment . Springer, 2010, 25
13 Robertson J, Falabretti B. Chapter 2: electronic structure of transparent conducting oxides. In: Ginley D S, ed. Handbook of Transparent Conductors . New York: Springer, 2010, 27
14 Singh A K, Janotti A, Scheffler M, . Sources of electrical conductivity in SnO2. Physical Review Letters , 2008, 101(5): 055502 (4 pages)
15 Li Z Q, Yin Y L, Liu X D, . Electronic structure and optical properties of Sb-doped SnO2. Journal of Applied Physics , 2009, 106(8): 083701
16 Al-Gaashani R, Radiman S, Tabet N, . Optical properties of SnO2 nanostructures prepared via one-step thermal decomposition of tin(II) chloride dihydrate. Materials Science and Engineering B , 2012, 177(6): 462–470
17 Yu D, Wang D, Yu W, . Synthesis of ITO nanowires and nanorods with corundum structure by a co-precipitation-anneal method. Materials Letters , 2004, 58(1–2): 84–87
18 Ibarguen C A, Mosquera A, Parra R, . Synthesis of SnO2 nanoparticles through the controlled precipitation route. Materials Chemistry and Physics , 2007, 101(2–3): 433–440
19 Nguyen T B, Le T T B, Nguyen N L. The preparation of SnO2 and SnO2:Sb nanopowders by a hydrothermal method. Advances in Natural Sciences: Nanoscience and Nanotechnology , 2010, 1(2): 025002 (4 pages)
20 Korosi L, Papp S, Meynen V, . Preparation and characterization of SnO2 nanoparticles of enhanced thermal stability: The effect of phosphoric acid treatment on SnO2·nH2O. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2005, 268(1–3): 147–154
21 Seo M, Akutsu Y, Kagemoto H. Preparation and properties of Sb-doped SnO2/metal substrates by sol–gel and dip coating. Ceramics International , 2007, 33(4): 625–629
22 Zhu F L, Meng Y S. Synthesis and characterization of antimony doped tin oxide conductive nanoparticles by alkoxide hydrolysis method. Advanced Materials Research , 2013, 702: 167–171
23 Leite E R, Maciel A P, Weber I T, . Development of metal oxide nanoparticles with high stability against particle growth using a metastable solid solution. Advanced Materials , 2002, 14(12): 905–908
24 Rodrigues E C P E, Olivi P. Preparation and characterization of Sb-doped SnO2 films with controlled stoichiometry from polymeric precursors. Journal of Physics and Chemistry of Solids , 2003, 64(7): 1105–1112
25 Xu J M, Li L, Wang S, . Influence of Sb doping on the structural and optical properties of tin oxide nanocrystals. CrystEngComm , 2013, 15(17): 3296–3300
26 Zhong X, Yang B, Zhang X, . Effect of calcining temperature and time on the characteristics of Sb-doped SnO2 nanoparticles synthesized by the sol–gel method. Particuology , 2012, 10(3): 365–370
27 Aziz M, Saber Abbas S, Wan Baharom W R. Size-controlled synthesis of SnO2 nanoparticles by sol–gel method. Materials Letters , 2013, 91: 31–34
28 Jeng J S. The influence of annealing atmosphere on the material properties of sol–gel derived SnO2:Sb films before and after annealing. Applied Surface Science , 2012, 258(16): 5981–5986
29 Ningthoujam R S, Kulshreshtha S K. Nanocrystalline SnO2 from thermal decomposition of tin citrate crystal: luminescence and Raman studies. Materials Research Bulletin , 2009, 44(1): 57–62
30 Gordillo G, Moreno L C, de la Cruz W, . Preparation and characterization of SnO2 thin films deposited by spray pyrolysis from SnC12 and SnC14 precursors. Thin Solid Films , 1994, 252(1): 61–66
31 Comninellis Ch, Vercesi G P. Problems in DSA? coating deposition by termal decomposition. Journal of Applied Electrochemistry , 1991, 21(2): 136–142
32 Terrier C, Chatelon J P, Roger J A, . Analysis of antimony doping in tin oxide thin films obtained by the sol–gel method. Journal of Sol–Gel Science and Technology , 1997, 10(1): 75–81
33 Terrier C, Chatelon J P, Berjoan R, . Sb-doped SnO2, transparent conducting oxide from the sol–gel dip-coating technique. Thin Solid Films , 1995, 263(1): 37–41
34 Gonzalez-Oliver C J R, Kato I. Sn(Sb)-oxide sol–gel coatings on glass. Journal of Non-Crystalline Solids , 1986, 82(1–3): 400–410
35 Xu C, Xu G, Liu Y, . Preparation and characterization of SnO2 nanorods by thermal decomposition of SnC2O4 precursor. Scripta Materialia , 2002, 46(11): 789–794
36 Bhagwat M, Shah P, Ramaswamy V. Synthesis of nanocrystalline SnO2 powder by amorphous citrate route. Materials Letters , 2003, 57(9–10): 1604–1611
37 Pechini M P. US Patent, 3 330 697, 1967-07-01
38 Besso M M. US Patent, 3 213 120, 1965-10-19
39 Tselesh A S. Anodic behaviour of tin in citrate solutions: The IR and XPS study on the composition of the passive layer. Thin Solid Films , 2008, 516(18): 6253–6260
40 Chalupa J, Handlir K, Cisarova I, . Structural study of bis(triorganotin(IV)) esters of 4-ketopimelic acid. Journal of Organometallic Chemistry , 2006, 691(12): 2631–2640
41 Feng S, Tang Y, Xiao T. Anodization, precursor route to flowerlike patterns composed of nanoporous tin oxide nanostrips on tin substrate. Journal of Physical Chemistry C , 2009, 113(12): 4809–4813
42 Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, Inc. Vol. 25, 2007
43 Batista P D, Mulato M, Graeff C F O, . SnO2 extended gate field-effect transistor as pH sensor. Brazilian Journal of Physics , 2006, 36(2a): 478–481
44 Grzeta B, Tkalcec E, Goebbert C, . Structural studies of nanocrystalline SnO2 doped with antimony: XRD and M?ssbauer spectroscopy. Journal of Physics and Chemistry of Solids , 2002, 63(5): 765–772
45 Krishnakumar T, Jayaprakash R, Pinna N, . Structural, optical and electrical characterization of antimony-substituted tin oxide nanoparticles. Journal of Physics and Chemistry of Solids , 2009, 70(6): 993–999
46 Zhang D L, Tao L, Deng Z B, . Surface morphologies and properties of pure and antimony-doped tin oxide films derived by sol–gel dip-coating processing. Materials Chemistry and Physics , 2006, 100(2–3): 275–280
[1] Tanya NANDA, Ankita RATHORE, Deepika SHARMA. Biomineralized and chemically synthesized magnetic nanoparticles: A contrast[J]. Front. Mater. Sci., 2020, 14(4): 387-401.
[2] Yimin ZHOU, Qingni XU, Chaohua LI, Yuqi CHEN, Yueli ZHANG, Bo LU. Hollow mesoporous silica nanoparticles as nanocarriers employed in cancer therapy: A review[J]. Front. Mater. Sci., 2020, 14(4): 373-386.
[3] Qizhi TIAN, Yajun JI, Yiyi QIAN, Abulikemu ABULIZI. Synthesis of defect-rich hierarchical sponge-like TiO2 nanoparticles and their improved photocatalytic and photoelectrochemical performance[J]. Front. Mater. Sci., 2020, 14(3): 286-295.
[4] Zhenxiao LU, Wenxian WANG, Jun ZHOU, Zhongchao BAI. FeS2@C nanorods embedded in three-dimensional graphene as high-performance anode for sodium-ion batteries[J]. Front. Mater. Sci., 2020, 14(3): 255-265.
[5] Xin LIU, Xiangling REN, Longfei TAN, Wenna GUO, Zhongbing HUANG, Xianwei MENG. Preparation and enhanced properties of ZrMOF@CdTe nanoparticles with high-density quantum dots[J]. Front. Mater. Sci., 2020, 14(2): 155-162.
[6] Meenaketan SETHI, U. Sandhya SHENOY, Selvakumar MUTHU, D. Krishna BHAT. Facile solvothermal synthesis of NiFe2O4 nanoparticles for high-performance supercapacitor applications[J]. Front. Mater. Sci., 2020, 14(2): 120-132.
[7] Sudipta BISWAS, Satadru PRAMANIK, Suman MANDAL, Sudeshna SARKAR, Sujata CHAUDHURI, Swati DE. Facile synthesis of asymmetric patchy Janus Ag/Cu particles and study of their antifungal activity[J]. Front. Mater. Sci., 2020, 14(1): 24-32.
[8] Kaushik DAS, G. A. KUMAR, Leonardo MIRANDOLA, Maurizio CHIRIVA-INTERNATI, Jharna CHAUDHURI. Synthesis and characterization of lanthanide-doped sodium holmium fluoride nanoparticles for potential application in photothermal therapy[J]. Front. Mater. Sci., 2019, 13(4): 389-398.
[9] Timur Sh. ATABAEV, Anara MOLKENOVA. Upconversion optical nanomaterials applied for photocatalysis and photovoltaics: Recent advances and perspectives[J]. Front. Mater. Sci., 2019, 13(4): 335-341.
[10] Weiwei FAN, Jilu WANG, Jiajun FENG, Yong WANG. Facile preparation of acid/CO2 stimuli-responsive sheddable nanoparticles based on carboxymethylated chitosan[J]. Front. Mater. Sci., 2019, 13(3): 296-304.
[11] Pengcheng WU, Chang LIU, Yan LUO, Keliang WU, Jianning WU, Xuhong GUO, Juan HOU, Zhiyong LIU. A novel black TiO2/ZnO nanocone arrays heterojunction on carbon cloth for highly efficient photoelectrochemical performance[J]. Front. Mater. Sci., 2019, 13(1): 43-53.
[12] Cong ZHAO, Da-chuan ZHU, Xiao-yao CHENG, Shi-xiu CAO. Highly ordered Ag--TiO2 nanocomposited arrays with high visible-light photocatalytic activity[J]. Front. Mater. Sci., 2017, 11(3): 241-249.
[13] Xuan SHEN, Xiaohong XIA, Yongling DU, Chunming WANG. Electroless deposition of Au nanoparticles on reduced graphene oxide/polyimide film for electrochemical detection of hydroquinone and catechol[J]. Front. Mater. Sci., 2017, 11(3): 262-270.
[14] Wenlan WU,Junbo LI,Sheng ZOU,Jinwu GUO,Huiyun ZHOU. Construction of Au@Pt core--satellite nanoparticles based on in-situ reduction of polymeric ionic liquid protected gold nanoparticles[J]. Front. Mater. Sci., 2017, 11(1): 42-50.
[15] Junbo LI,Jianlong ZHAO,Wenlan WU,Ju LIANG,Jinwu GUO,Huiyun ZHOU,Lijuan LIANG. Temperature and anion responsive self-assembly of ionic liquid block copolymers coating gold nanoparticles[J]. Front. Mater. Sci., 2016, 10(2): 178-186.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed