Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2014, Vol. 8 Issue (3) : 230-243    https://doi.org/10.1007/s11706-014-0256-6
RESEARCH ARTICLE
In vitro corrosion of Mg--6Zn--1Mn--4Sn--1.5Nd/0.5Y alloys
Rong-Chang ZENG1,*(),Lei WANG1,Ding-Fei ZHANG2,*(),Hong-Zhi CUI1,En-Hou HAN3
1. College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
2. College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
3. National Engineering Center for Corrosion Control, Institute of Metals Research, Chinese Academy of Sciences, Shenyang 110016, China
 Download: PDF(3607 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The microstructure evaluation, surface morphology, chemical compositions and phase analysis of the biomedical Mg--6Zn--1Mn--4Sn--1.5Nd/0.5Y (ZMT614--1.5Nd/0.5Y) alloys were investigated by means of optical microscopy, EPMA, X-ray EDS, XRD and FTIR. The corrosion behavior was evaluated using weight-loss measurement, hydrogen evolution, electrochemical and pH measurements. The results demonstrate that the microstructure for both ZMT614--1.5Nd alloy and ZMT614--0.5Y alloy is characterized by α-Mg and intermetallic compounds, most of which are distributed along the grain boundaries. These second phases contain Mg2Zn, Mg2Zn11, Mg2Sn and single metal Mn, together with Mg12Nd phase for the ZMT614--1.5Nd alloy, and with Mg24Y5 phase for the ZMT614--0.5Y alloy. Honeycomb-like corrosion product layers form. The corrosion resistance of the ZMT614--0.5Y alloy is higher than that of the ZMT614--1.5Nd alloy, which is ascribed to the addition of the element Y into the alloy delaying the corrosion initiation in comparison to that of Nd element in the alloy.

Keywords magnesium alloy      yttrium      neodymium      corrosion      biomaterial     
Corresponding Author(s): Rong-Chang ZENG   
Online First Date: 27 August 2014    Issue Date: 12 September 2014
 Cite this article:   
Rong-Chang ZENG,Lei WANG,Ding-Fei ZHANG, et al. In vitro corrosion of Mg--6Zn--1Mn--4Sn--1.5Nd/0.5Y alloys[J]. Front. Mater. Sci., 2014, 8(3): 230-243.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-014-0256-6
https://academic.hep.com.cn/foms/EN/Y2014/V8/I3/230
AlloyContent /wt.%
ZnMnSnNdYMg
ZMT614–1.5Nd6.030.944.011.59-bal.
ZMT614–0.5Y6.120.893.87-0.39bal.
Tab.1  Chemical compositions of the two alloys
Chemical compositionContent /(g?L-1)
NaCl8.0
CaCl20.14
KCl0.4
NaHCO30.35
Glucose1.0
MgCl2·6H2O0.1
Na2HPO4·12H2O0.126
KH2PO40.06
MgSO4·7H2O0.1
Tab.2  Chemical compositions of HBSS
Fig.1  XRD results for ZMT614–1.5Nd/0.5Y alloys and pure Mg alloy.
Fig.2  Optical micrographs of (a) ZMT614–1.5Nd alloy and (b) ZMT614–0.5Y alloy.
Fig.3  EPMA images and EDS results of (a) ZMT614–1.5Nd alloy and (b) ZMT614–0.5Y alloy.
SpectrumContent /at.%
OMgZnMnSnNdY
A27.6334.892.71-7.957.03-
B16.6373.942.60.313.31-3.21
Tab.3  Chemical compositions of the intermetallic compounds in ZMT614–1.5Nd alloy and ZMT614–0.5Y alloy, probed by EDS
Fig.4  Surface elemental scanning of (a) the ZMT614–1.5Nd alloy: (b) O, (c) Mg, (d) Zn, (e) Sn, (f) Mn; and (g) the ZMT614–0.5Y alloy: (h) O, (i) Mg, (j) Zn, (k) Sn, (l) Mn.
Fig.5  Electrochemical measurements for three samples: (a) open circuit potential curves; (b) Tafel curves; (c) Nyquist plots; (d) Bode figure.
MaterialEcorr /V vs. SCEJcorr /(mA?cm-2)Rp /(Ω?cm-2)
ZMT614–1.5Nd-1.410.062408.48
ZMT614–0.5Y-1.460.020814.80
Pure Mg-1.350.0074131.00
Tab.4  Electrochemical corrosion data for the samples
Fig.6  (a) Change in solution pH over immersion time. (b) HERs of ZMT614–1.5Nd/0.5Y alloys and the pure Mg sample in HBSS.
Fig.7  Corrosion morphology: (a) pure Mg immersed in HBSS for 125 h; (b) enlarged image of the selected area in (a) and EDS result of Point A.
Fig.8  EPMA images and EDS results of ZMT614–1.5Nd alloy after immersion in HBSS for (a) 15 min, (b) 30 min, (c) 1 h, (d) 2 h, (e) 5 h, (f) 10 h, and (g) 125 h. (h) Enlarged results of the selected area in (g).
SpectrumElement content /at.%
MgClPCaMnZnSnNdO
A48.02---0.141.240.4-50.2
B46.620.22--0.242.170.450.1550.15
C38.13---1.87.511.310.4850.77
D27.83--0.69-1.614.210.8654.82
E30.16-6.786.380.141.040.26-55.22
F22.75-1.471.22-1.198.687.457.29
G15.71-12.6116.480.150.470.42-36.86
Tab.5  Compositions of the intermetallic compounds in ZMT614–1.5Nd alloy obtained by EDS
Fig.9  EPMA images and EDS results of ZMT614–0.5Y alloy after immersion in HBSS for (a) 15 min, (b) 30 min, (c) 1 h, (d) 2 h, (e) 5 h, (f) 10 h, and (g) 125 h. (h) Enlarged results of the selected area in (g).
SpectrumElement content /at.%
MgPCaMnZnSnYO
A47.710.17-0.111.380.34-50.3
B47.5--0.171.750.39-50.19
C47.46--0.211.720.41-50.21
D48.45--0.160.940.3-50.15
E9.4713.7815.99-0.43--60.33
F47.87-0.280.160.450.380.5350.32
G7.7611.422.89-0.15---
Tab.6  Intermetallic compounds in ZMT614–0.5Y alloy based on the atomic ratio obtained by EDS
Fig.10  XRD patterns of ZMT614–1.5Nd/0.5Y alloys and pure Mg immersed in HBSS after 125 h.
Fig.11  FTIR spectra of ZMT614–1.5Nd/0.5Y alloys and pure Mg.
Fig.12  Schematic illustration of the corrosion mechanism of ZMT614–1.5Nd/0.5Y alloys: (a) In the initial stage of corrosion, ions in solution attacked the matrix with the formation of corrosion products and producing a large amount of hydrogen gas, so that honeycomb structure has basically formed; (b) Corrosion pits continued to deepen, and were filled with corrosion products such as Mg(OH)2, MgCO3, HA, MCPM and CaZn2(PO4)2 due to the presence of the second phase, a honeycomb structure of layers was formed perfectly.
1 Zeng R C, Kainer K U, Blawert C, . Corrosion of an extruded magnesium alloy ZK60 component - The role of microstructural features. Journal of Alloys and Compounds, 2011, 509(13): 4462-4469
2 Zeng R C, Chen J, Kuang J, . Influence of silane on corrosion resistance of magnesium alloy AZ31 with thermally sprayed aluminum coatings. Rare Metals, 2010, 29(2): 193-197
3 Zeng R C, Ke W, Xu Y B, . Recent development and application of magnesium alloys. Acta Metallurgica Sinica, 2001, 37(7): 673-685
4 Witte F, Kaese V, Haferkamp H, . In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials, 2005, 26(17): 3557-3563
5 Chen J, Zeng R C, Huang W J, . Characterization and wear resistance of macro-arc oxidation coating on magnesium alloy AZ91 in simulated body fluids. Transactions of Nonferrous Metals Society of China, 2008, 18: 361-364
6 Zeng R C, Dietzel W, Witte F, . Progress and challenge for magnesium alloys as biomaterials. Advanced Engineering Materials, 2008, 10(8): B3-B14
7 Zeng R C, Sun L, Zheng Y F, . Corrosion and characterization of dual phase Mg–Li–Ca alloy in Hank’s solution: The influence of microstructural features. Corrosion Science, 2014, 79: 69-82
8 Zeng R C, Zhang J, Huang W J, . Review of studies on corrosion of magnesium alloys. Transactions of Nonferrous Metals Society of China, 2006, 16: 763-771
9 Zhang S, Zhang X, Zhao C, . Research on an Mg–Zn alloy as a degradable biomaterial. Acta Biomaterialia, 2010, 6(2): 626-640
10 He W, Zhang E, Yang K. Effect of Y on the bio-corrosion behavior of extruded Mg–Zn–Mn alloy in Hank’s solution. Materials Science and Engineering C, 2010, 30(1): 167-174
11 Zhang E, Yang L. Microstructure, mechanical properties and bio-corrosion properties of Mg–Zn–Mn–Ca alloy for biomedical application. Materials Science and Engineering A, 2008, 497(1-2): 111-118
12 Tapiero H, Tew K D. Trace elements in human physiology and pathology: zinc and metallothioneins. Biomedicine and Pharmacotherapy, 2003, 57(9): 399-411
13 Chen J, Chen Z, Yan H, . Effects of Sn addition on microstructure and mechanical properties of Mg–Zn–Al alloys. Journal of Alloys and Compounds, 2008, 461(1-2): 209-215
14 Clark J. Transmission electron microscopy study of age hardening in a Mg–5 wt.% Zn alloy. Acta Metallurgica, 1965, 13(12): 1281-1289
15 Maeng D, Kim T, Lee J, . Microstructure and strength of rapidly solidified and extruded Mg–Zn alloys. Scripta Materialia, 2000, 43(5): 385-389
16 Chun J, Byrne J. Precipitate strengthening mechanisms in magnesium zinc alloy single crystals. Journal of Materials Science, 1969, 4(10): 861-872
17 Zhang D F, Shi G L, Zhao X B, . Microstructure evolution and mechanical properties of Mg–x%Zn–1%Mn (x = 4, 5, 6, 7, 8, 9) wrought magnesium alloys. Transactions of Nonferrous Metals Society of China, 2011, 21(1): 15-25
18 Zhang H J, Zhang D F, Ma C H, . Improving mechanical properties and corrosion resistance of Mg–6Zn–Mn magnesium alloy by rapid solidification. Materials Letters, 2013, 92: 45-48
19 Qi F, Zhang D, Zhang X, . Effect of Sn addition on the microstructure and mechanical properties of Mg–6Zn–1Mn (wt.%) alloy. Journal of Alloys and Compounds, 2014, 585: 656-666
20 Zhang E, Yin D, Xu L, . Microstructure, mechanical and corrosion properties and biocompatibility of Mg–Zn–Mn alloys for biomedical application. Materials Science and Engineering C, 2009, 29(3): 987-993
21 Zhang D F, Xu X X, Qi F G, . Effects of Sn on microstructure and mechanical properties of ZM61 alloy. Rare Metal Materials and Engineering, 2013, 42(5): 931-936
22 Hu G S, Zhang D F, Guo F, . Microstructure and mechanical properties of Mg–Zn–Mn–Sn–Nd wrought alloys. Journal of Rare Earths, 2014, 32(1): 52-56
23 Nakatsugawa I, Takayasu H, Araki K, . Electrochemical corrosion studies of thixomolded AZ91D alloy in sodium chloride solution. Materials Science Forum, 2003, 419-422: 845-850
24 Zeng R C, Chen J, Dietzel W, . Electrochemical behavior of magnesium alloys in simulated body fluids. Transactions of Nonferrous Metals Society of China, 2007, 17(1): 166-170
25 Zhang X, Zhang S.Biocompatibility of magnesium–zinc alloy in biodegradable orthopedic implants. International Journal of Molecular Medicine, 2011, 28(3): 343-348
26 Li Z, Song G-L, Song S. Effect of bicarbonate on biodegradation behaviour of pure magnesium in a simulated body fluid. Electrochimica Acta, 2014, 115: 56-65
27 Zhao M C, Schmutz P, Brunner S, . An exploratory study of the corrosion of Mg alloys during interrupted salt spray testing. Corrosion Science, 2009, 51(6): 1277-1292
28 Song G L, Atrens A. Understanding magnesium corrosion - a framework for improved alloy performance. Advanced Engineering Materials, 2003, 5(12): 837-858
29 Song Y, Shan D, Chen R, . Investigation of surface oxide film on magnesium lithium alloy. Journal of Alloys and Compounds, 2009, 484(1-2): 585-590
30 Kuwahara H, AlAbdullat Y, Mazaki N, . Precipitation of magnesium apatite on pure magnesium surface during immersing in Hank’s solution. Materials Transactions, 2001, 42(7): 1317-1321
31 Li Z, Gu X, Lou S, . The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials, 2008, 29(10): 1329-1344
32 Jonasova L, Müller F A, Helebrant A, . Biomimetic apatite formation on chemically treated titanium. Biomaterials, 2004, 25(7-8): 1187-1194
33 Liu M, Schmutz P, Uggowitzer P J, . The influence of yttrium (Y) on the corrosion of Mg–Y binary alloys. Corrosion Science, 2010, 52(11): 3687-3701
34 Kouisni L, Azzi M, Zertoubi M, . Phosphate coatings on magnesium alloy AM60 part 1: study of the formation and the growth of zinc phosphate films. Surface and Coatings Technology, 2004, 185(1): 58-67
35 Li G, Lian J, Niu L, . Growth of zinc phosphate coatings on AZ91D magnesium alloy. Surface and Coatings Technology, 2006, 201(3-4): 1814-1820
36 Yu K. Study on the microstructure, properties and deformation techniques of rare earth wrought magnesium alloys. Dissertation for the Doctoral Degree. Changsha: Central South University, 2002
[1] Xiang SUN, Qing-Song YAO, Yu-Chao LI, Fen ZHANG, Rong-Chang ZENG, Yu-Hong ZOU, Shuo-Qi LI. Biocorrosion resistance and biocompatibility of Mg--Al layered double hydroxide/poly(L-lactic acid) hybrid coating on magnesium alloy AZ31[J]. Front. Mater. Sci., 2020, 14(4): 426-441.
[2] Lei CHANG, Xiangrui LI, Xuhui TANG, He ZHANG, Ding HE, Yujun WANG, Jiayin ZHAO, Jingan LI, Jun WANG, Shijie ZHU, Liguo WANG, Shaokang GUAN. Micro-patterned hydroxyapatite/silk fibroin coatings on Mg--Zn--Y--Nd--Zr alloys for better corrosion resistance and cell behavior guidance[J]. Front. Mater. Sci., 2020, 14(4): 413-425.
[3] Zheng-Zheng YIN, Wei HUANG, Xiang SONG, Qiang ZHANG, Rong-Chang ZENG. Self-catalytic degradation of iron-bearing chemical conversion coating on magnesium alloys ---- Influence of Fe content[J]. Front. Mater. Sci., 2020, 14(3): 296-313.
[4] Huan-Yan XU, Dan LU, Xu HAN. Graphene-induced enhanced anticorrosion performance of waterborne epoxy resin coating[J]. Front. Mater. Sci., 2020, 14(2): 211-220.
[5] Zai-Meng QIU, Fen ZHANG, Jun-Tong CHU, Yu-Chao LI, Liang SONG. Corrosion resistance and hydrophobicity of myristic acid modified Mg--Al LDH/Mg(OH)2 steam coating on magnesium alloy AZ31[J]. Front. Mater. Sci., 2020, 14(1): 96-107.
[6] Mengke PENG, Fenyan HU, Minting DU, Bingjie MAI, Shurong ZHENG, Peng LIU, Changhao WANG, Yashao CHEN. Hydrothermal growth of hydroxyapatite and ZnO bilayered nanoarrays on magnesium alloy surface with antibacterial activities[J]. Front. Mater. Sci., 2020, 14(1): 14-23.
[7] Wei WU, Fen ZHANG, Yu-Chao LI, Yong-Feng ZHOU, Qing-Song YAO, Liang SONG, Rong-Chang ZENG, Sie Chin TJONG, Dong-Chu CHEN. Corrosion resistance of a silane/ceria modified Mg--Al-layered double hydroxide on AA5005 aluminum alloy[J]. Front. Mater. Sci., 2019, 13(4): 420-430.
[8] Xiao-Jing JI, Qiang CHENG, Jing WANG, Yan-Bin ZHAO, Zhuang-Zhuang HAN, Fen ZHANG, Shuo-Qi LI, Rong-Chang ZENG, Zhen-Lin WANG. Corrosion resistance and antibacterial effects of hydroxyapatite coating induced by polyacrylic acid and gentamicin sulfate on magnesium alloy[J]. Front. Mater. Sci., 2019, 13(1): 87-98.
[9] Lian GUO, Fen ZHANG, Jun-Cai LU, Rong-Chang ZENG, Shuo-Qi LI, Liang SONG, Jian-Min ZENG. A comparison of corrosion inhibition of magnesium aluminum and zinc aluminum vanadate intercalated layered double hydroxides on magnesium alloys[J]. Front. Mater. Sci., 2018, 12(2): 198-206.
[10] Ling-Yu LI, Bin LIU, Rong-Chang ZENG, Shuo-Qi LI, Fen ZHANG, Yu-Hong ZOU, Hongwei (George) JIANG, Xiao-Bo CHEN, Shao-Kang GUAN, Qing-Yun LIU. In vitro corrosion of magnesium alloy AZ31 --- a synergetic influence of glucose and Tris[J]. Front. Mater. Sci., 2018, 12(2): 184-197.
[11] Feng LI, Yang LIU, Xu-Bo LI. Dynamic recrystallization behavior of AZ31 magnesium alloy processed by alternate forward extrusion[J]. Front. Mater. Sci., 2017, 11(3): 296-305.
[12] Lan-Yue CUI, Xiao-Ting LI, Rong-Chang ZENG, Shuo-Qi LI, En-Hou HAN, Liang SONG. In vitro corrosion of Mg--Ca alloy --- The influence of glucose content[J]. Front. Mater. Sci., 2017, 11(3): 284-295.
[13] Tao JIN,Fan-mei KONG,Rui-qin BAI,Ru-liang ZHANG. Anti-corrosion mechanism of epoxy-resin and different content Fe2O3 coatings on magnesium alloy[J]. Front. Mater. Sci., 2016, 10(4): 367-374.
[14] Xuran GUO,Kaile ZHANG,Mohamed EL-AASSAR,Nanping WANG,Hany EL-HAMSHARY,Mohamed EL-NEWEHY,Qiang FU,Xiumei MO. The comparison of the Wnt signaling pathway inhibitor delivered electrospun nanoyarn fabricated with two methods for the application of urethroplasty[J]. Front. Mater. Sci., 2016, 10(4): 346-357.
[15] Li-Da HOU,Zhen LI,Yu PAN,MuhammadIqbal SABIR,Yu-Feng ZHENG,Li LI. A review on biodegradable materials for cardiovascular stent application[J]. Front. Mater. Sci., 2016, 10(3): 238-259.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed