Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2015, Vol. 9 Issue (1) : 66-76    https://doi.org/10.1007/s11706-015-0272-1
RESEARCH ARTICLE
Mechanical and corrosion properties of Al/Ti film on magnesium alloy AZ31B
Rong-Chang ZENG1,2,*(),Ke JIANG1,2,Shuo-Qi LI1,2,Fen ZHANG1,2,Hong-Zhi CUI1,2,En-Hou HAN3
1. College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
2. State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
3. Institute of Metals Research, Chinese Academy of Sciences, Shenyang 110016, China
 Download: PDF(3757 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Preparation of titanium film on magnesium substrate faces a challenge due to non-Fickian inter-diffusion between titanium and magnesium. Aluminum can build a bridge between titanium and magnesium. Al/Ti duplex coatings were deposited on magnesium alloy AZ31B using magnetron sputtering (MS). The low temperature diffusion bonding behavior of the Mg/Al/Ti coating was investigated through SEM and its affiliated EDS. The phase structure and critical load of the coatings were examined by means of XRD and scratch tests, respectively. The results demonstrated that the bonding strength was significantly improved after a post heat treatment (HT) at a temperature of 210°C. The diffusion mechanism of the interfaces of Mg/Al and Al/Ti in the coating was discussed based on the analysis of formation energy of vacancies and diffusion rates. The Al/Ti dual layer enhanced the corrosion resistance of the alloy. And the HT process further increased the corrosion resistance of the coated alloy. This result implies that a post HT at a lower temperature after MS is an effective approach to enhance the bonding strength and corrosion resistance of the Al/Ti film on Mg alloys.

Keywords magnesium alloy      aluminum/titanium coating      magnetron sputtering (MS)      diffusion      bonding strength     
Corresponding Author(s): Rong-Chang ZENG   
Online First Date: 12 December 2014    Issue Date: 02 March 2015
 Cite this article:   
Rong-Chang ZENG,Ke JIANG,Shuo-Qi LI, et al. Mechanical and corrosion properties of Al/Ti film on magnesium alloy AZ31B[J]. Front. Mater. Sci., 2015, 9(1): 66-76.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-015-0272-1
https://academic.hep.com.cn/foms/EN/Y2015/V9/I1/66
Sample Time /h Current /A Voltage /V
Al Ti Al Ti Al Ti
1# 0.5 1 1.01 1.00 284 284
2# 0.5 2 1.01 1.00 284 284
3# 0.5 3 1.01 1.00 284 284
Tab.1  Deposition parameters of the Al/Ti films via DCMS
Fig.1  SEM images and their corresponding Ti elemental mapping of (a)(d) sample 1#, (b)(e) sample 2# and (c)(f) sample 3#.
Fig.2  (a) SEM image and elemental mapping of (b) Mg, (c) Ti and (d) Al elements on the cross-sectional view of sample 2# after the post HT treatment.
Fig.3  XRD patterns: (a) samples before HT; (b) samples after HT; comparison of (c) sample 1#, (d) sample 2# and (e) sample 3# before and after HT.
Fig.4  (a) Critical load and (b) coating thickness of samples before and after HT.
Fig.5  (a) OCPs and (b) current densities of the Al/Ti coated samples in comparison to that of the substrate and Ti6Al4V [40].
Component Variables
Qv /eV N /(atoms·m-3) Nv /(vacancies·m-3)
Mg 0.79 [42] 4.31×1028 2.48×1020
Al 0.69 [42] 6.02×1028 3.82×1021
Ti 1.56 [4344] 5.71×1028 3.44 ×1012
Tab.2  Equilibrium number of vacancies for Mg, Al and Ti at 483 K
Diffusing species Host metal D0 /(m2?s-1) Activation energy D210 /(m2?s-1) Refs.
Qv /(kJ?mol-1) Qv /(eV?atm-1)
Al α-Ti 6.60×10-3 329.0 3.41 1.68×10-38 [45]
Ti Al 1.12×10-1 260.0 2.69 8.23×10-30 [46]
Mg Al 1.20×10-4 131.0 1.36 9.37×10-19 [47]
28Mg Al 6.23×10-6 114.8 1.19 2.98×10-18 [48]
Mg Al–0.8at.%Mg 60.0×10-6 125.0 1.30 2.31×10-18 [41,49]
Al Mg 1.61×10-4 144.1 1.49 4.12×10-20 [50]
Al Mg 4.24×10-6a) 137.1 1.42 6.21×10-21 [51]
Al Mg 7.17×10-6b) 142.9 1.48 2.49×10-21 [51]
Tab.3  Arrhenius parameters of impurities diffusion coefficients of Ti–Al and Al–Mg systems at 483 K
Fig.6  Diffusion coefficients as a function of reciprocal temperature for Mg–Al–Ti metals.
<?PubTbl row rht="0.30in"?>
CVDchemical vapor deposition
DCdirect current
DCMSdirect current magnetron sputtering
DLCdiamond-like carbon
EDSenergy dispersive X-ray spectroscopy
HTheat treatment
MSmagnetron sputtering
OCPopen circuit potential
PVDphysical vapor deposition
RFradio frequency
SCEsaturated calomel electrode
SDsputter deposition
SEMscanning electron microscopy
XRDX-ray diffraction
Tab.1  
1 Zeng R C, Ke W, Xu Y B, . Recent development and application of magnesium alloys. Acta Metallurgica Sinica, 2001, 37(7): 673–685 (in Chinese)
2 Zeng R C, Kainer K U, Blawert C, . Corrosion of an extruded magnesium alloy ZK60 component — The role of microstructural features. Journal of Alloys and Compounds, 2011, 509(13): 4462–4469
3 Zeng R C, Wang L, Zhang D F, . In vitro corrosion of Mg–6Zn–1Mn–4Sn–1.5Nd/0.5Y alloys. Frontiers of Materials Science, 2014, 8(3): 230–243
4 Song G L, Zeng R C. Preface for the special issue on light metals as biomaterials. Frontiers of Materials Science, 2014, 8(3): 199
5 Zeng R C, Chen J, Dietzel W, . Electrochemical behavior of magnesium alloys in simulated body fluids. Transactions of Nonferrous Metals Society of China, 2007, 17: s166–s169
6 Zeng R C, Zhang J, Huang W J, . Review of studies on corrosion of magnesium alloys. Transactions of Nonferrous Metals Society of China, 2006, 16: s763–s771
7 Gray J, Luan B. Protective coatings on magnesium and its alloys — a critical review. Journal of Alloys and Compounds, 2002, 336(1–2): 88–113
8 Gurrappa I. Characterization of titanium alloy Ti–6Al–4V for chemical, marine and industrial applications. Materials Characteri-zation, 2003, 51(2–3): 131–139
9 Dupuis J, Chenon M, Faure S, . Mechanical properties and corrosion resistance of some titanium alloys in marine environment. MATEC Web of Conferences 7. EDP Sciences, 2013, 01009 (2 pages)
10 Yu Z T, Zhang M H, Tian Y X, . Designation and development of biomedical Ti alloys with finer biomechanical compatibility in long-term surgical implants. Frontiers of Materials Science, 2014, 8(3): 219–229
11 Zhang E, Xu L, Yang K. Formation by ion plating of Ti-coating on pure Mg for biomedical applications. Scripta Materialia, 2005, 53(5): 523–527
12 Liu C, Xin Y, Tian X, . Corrosion resistance of titanium ion implanted AZ91 magnesium alloy. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2007, 25(2): 334–339
13 Wu G, Ding K, Zeng X, . Improving corrosion resistance of titanium-coated magnesium alloy by modifying surface characteristics of magnesium alloy prior to titanium coating deposition. Scripta Materialia, 2009, 61(3): 269–272
14 Zhao Y, Wu G, Lu Q, . Improved surface corrosion resistance of WE43 magnesium alloy by dual titanium and oxygen ion implantation. Thin Solid Films, 2013, 529: 407–411
15 Zeng R C, Chen J, Kuang J, . Influence of silane on corrosion resistance of magnesium alloy AZ31 with thermally sprayed aluminum coatings. Rare Metals, 2010, 29(2): 193–197
16 Li X, Liang W, Zhao X, . Bonding of Mg and Al with Mg–Al eutectic alloy and its application in aluminum coating on magnesium. Journal of Alloys and Compounds, 2009, 471(1–2): 408–411
17 Zhang Y, Liang W, Wang H X, . Research on microstructure and properties of aluminum alloyed coating on AZ91D magnesium alloy by vacuum solid diffusion. Rare Metal Materials and Engineering, 2008, 37(11): 2023–2026 (in Chinese)
18 Zhu L, Song G. Improved corrosion resistance of AZ91D magnesium alloy by an aluminium-alloyed coating. Surface and Coatings Technology, 2006, 200(8): 2834–2840
19 Duygulu O, Kaya A A, Oktay G, . Diffusion bonding of magnesium, zirconium and titanium as implant material. Materials Science Forum, 2007, 417–420
20 Zhang C Y, Zeng R C, Chen R S, . Preparation of calcium phosphate coatings on Mg–1.0Ca alloy. Transactions of Nonferrous Metals Society of China, 2010, 20: s655–s659
21 Beach D B, Blum S E, LeGoues F K. Chemical vapor deposition of aluminum from trimethylamine-alane. Journal of Vacuum Science and Technology, 1989, 7(5): 3117–3118
22 Altun H, Sen S. The effect of DC magnetron sputtering AlN coatings on the corrosion behaviour of magnesium alloys. Surface and Coatings Technology, 2005, 197(2–3): 193–200
23 Wu S, Yen S, Chou T. A study of r.f.-sputtered Al and Ni thin films on AZ91D magnesium alloy. Surface and Coatings Technology, 2006, 200(8): 2769–2774
24 Wu G S, Wang A Y, Ding K J, . Fabrication of Cr coating on AZ31 magnesium alloy by magnetron sputtering. Transactions of Nonferrous Metals Society of China, 2008, 18: s329–s333
25 Wu G. Fabrication of Al and Al/Ti coatings on magnesium alloy by sputtering. Materials Letters, 2007, 61(18): 3815–3817
26 Wu G, Wang X, Ding K, . Corrosion behavior of Ti–Al–N/Ti–Al duplex coating on AZ31 magnesium alloy in NaCl aqueous solution. Materials Characterization, 2009, 60(8): 803–807
27 Wu G, Sun L, Dai W, . Influence of interlayers on corrosion resistance of diamond-like carbon coating on magnesium alloy. Surface and Coatings Technology, 2010, 204(14): 2193–2196
28 Technique for magnetron sputtering TiN film on magnesium alloy surface. Google Patents, 2009
29 Hollstein F, Wiedemann R, Scholz J. Characteristics of PVD-coatings on AZ31hp magnesium alloys. Surface and Coatings Technology, 2003, 162(2–3): 261–268
30 Flores M, Huerta L, Escamilla R, . Effect of substrate bias voltage on corrosion of TiN/Ti multilayers deposited by magnetron sputtering. Applied Surface Science, 2007, 253(17): 7192–7196
31 Saoula N, Djerourou S, Yahiaoui K, . Study of the deposition of Ti/TiN multilayers by magnetron sputtering. Surface and Interface Analysis, 2010, 42(6–7): 1176–1179
32 Wu G, Dai W, Zheng H, . Improving wear resistance and corrosion resistance of AZ31 magnesium alloy by DLC/AlN/Al coating. Surface and Coatings Technology, 2010, 205(7): 2067–2073
33 Wu G, Zeng X, Li G, . Preparation and characterization of ceramic/metal duplex coatings deposited on AZ31 magnesium alloy by multi-magnetron sputtering. Materials Letters, 2006, 60(5): 674–678
34 Zhang J, Yang D H, Ou X B. Microstructures and properties of aluminum film and its effect on corrosion resistance of AZ31B substrate. Transactions of Nonferrous Metals Society of China, 2008, 18: s312–s317
35 Avedesian M M, Baker H. ASM specialty handbook: magnesium and magnesium alloys. ASM international, 1999, 274
36 Mishin Y, Herzig C. Diffusion in the Ti–Al system. Acta Materialia, 2000, 48(3): 589–623
37 Pokhmurska H, Wielage B, Lampke T, . Post-treatment of thermal spray coatings on magnesium. Surface and Coatings Technology, 2008, 202(18): 4515–4524
38 Peng L, Yajiang L, Haoran G, . A study of phase constitution near the interface of Mg/Al vacuum diffusion bonding. Materials Letters, 2005, 59(16): 2001–2005
39 Kreimeyer M, Wagner F, Vollertsen F. Laser processing of aluminum–titanium-tailored blanks. Optics and Lasers in Engineering, 2005, 43(9): 1021–1035
40 Gurappa I. Characterization of different materials for corrosion resistance under simulated body fluid conditions. Materials Characterization, 2002, 49(1): 73–79
41 Picu R, Zhang D. Atomistic study of pipe diffusion in Al–Mg alloys. Acta Materialia, 2004, 52(1): 161–171
42 Tzanetakis P, Hillairet J, Revel G. The formation energy of vacancies in aluminium and magnesium. physica status solidi (b), 1976, 75: 433–439
43 Hou Y H, Tang M, Xu H L, . Eam calculation of formation enthalpies of Al, Li and Mg(Ti) intermetallic compounds. Acta Metallurgica Sinica, 2008, 44(2): 134–138 (in Chinese)
44 Li H, Wang S Q, Ye H Q. Influence of Nb doping on oxidation resistance of γ-TiAl: A first principles study. Acta Physica Sinica, 2009, (S1): 224–229 (in Chinese)
45 Koppers M, Herzig C, Friesel M, . Intrinsic self-diffusion and substitutional Al diffusion in α-Ti. Acta Materialia, 1997, 45(10): 4181–4191
46 Du Y, Chang Y, Huang B, . Diffusion coefficients of some solutes in fcc and liquid Al: critical evaluation and correlation. Materials Science and Engineering A, 2003, 363(1–2): 140–151
47 Callister W D, Rethwisch D G. Fundamentals of Materials Science and Engineering. Wiley, 2013
48 Fujikawa S, Hirano K. Diffusion of 28Mg in aluminum. Materials Science and Engineering, 1977, 27(1): 25–33
49 Lea C, Molinari C. Magnesium diffusion, surface segregation and oxidation in Al–Mg alloys. Journal of Materials Science, 1984, 19(7): 2336–2352
50 Kammerer C C, Kulkarni N S, Warmack R J, . Interdiffusion and impurity diffusion in polycrystalline Mg solid solution with Al or Zn. Journal of Alloys and Compounds, 2014, 617: 968–974
51 Ganeshan S, Hector L, Liu Z K. First-principles calculations of impurity diffusion coefficients in dilute Mg alloys using the 8-frequency model. Acta Materialia, 2011, 59(8): 3214–3228
52 Das S K, Jung I H. Effect of the basal plane orientation on Al and Zn diffusion in hcp Mg. Materials Characterization, 2014, 94: 86–92
53 Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science. Shanghai: Shanghai Jiao Tong University Press, 2006 (in Chinese)
54 Hoche H, Gro? S, Tro?mann T, . PVD coating and substrate pretreatment concepts for magnesium alloys by multinary coatings based on Ti(X)N. Surface and Coatings Technology, 2013, 228: S336–S341
55 Petrov I, Barna P, Hultman L, . Microstructural evolution during film growth. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2003, 21(5): S117–S128
[1] Xiang SUN, Qing-Song YAO, Yu-Chao LI, Fen ZHANG, Rong-Chang ZENG, Yu-Hong ZOU, Shuo-Qi LI. Biocorrosion resistance and biocompatibility of Mg--Al layered double hydroxide/poly(L-lactic acid) hybrid coating on magnesium alloy AZ31[J]. Front. Mater. Sci., 2020, 14(4): 426-441.
[2] Lei CHANG, Xiangrui LI, Xuhui TANG, He ZHANG, Ding HE, Yujun WANG, Jiayin ZHAO, Jingan LI, Jun WANG, Shijie ZHU, Liguo WANG, Shaokang GUAN. Micro-patterned hydroxyapatite/silk fibroin coatings on Mg--Zn--Y--Nd--Zr alloys for better corrosion resistance and cell behavior guidance[J]. Front. Mater. Sci., 2020, 14(4): 413-425.
[3] Zheng-Zheng YIN, Wei HUANG, Xiang SONG, Qiang ZHANG, Rong-Chang ZENG. Self-catalytic degradation of iron-bearing chemical conversion coating on magnesium alloys ---- Influence of Fe content[J]. Front. Mater. Sci., 2020, 14(3): 296-313.
[4] Zai-Meng QIU, Fen ZHANG, Jun-Tong CHU, Yu-Chao LI, Liang SONG. Corrosion resistance and hydrophobicity of myristic acid modified Mg--Al LDH/Mg(OH)2 steam coating on magnesium alloy AZ31[J]. Front. Mater. Sci., 2020, 14(1): 96-107.
[5] Mengke PENG, Fenyan HU, Minting DU, Bingjie MAI, Shurong ZHENG, Peng LIU, Changhao WANG, Yashao CHEN. Hydrothermal growth of hydroxyapatite and ZnO bilayered nanoarrays on magnesium alloy surface with antibacterial activities[J]. Front. Mater. Sci., 2020, 14(1): 14-23.
[6] Xiao-Jing JI, Qiang CHENG, Jing WANG, Yan-Bin ZHAO, Zhuang-Zhuang HAN, Fen ZHANG, Shuo-Qi LI, Rong-Chang ZENG, Zhen-Lin WANG. Corrosion resistance and antibacterial effects of hydroxyapatite coating induced by polyacrylic acid and gentamicin sulfate on magnesium alloy[J]. Front. Mater. Sci., 2019, 13(1): 87-98.
[7] Lian GUO, Fen ZHANG, Jun-Cai LU, Rong-Chang ZENG, Shuo-Qi LI, Liang SONG, Jian-Min ZENG. A comparison of corrosion inhibition of magnesium aluminum and zinc aluminum vanadate intercalated layered double hydroxides on magnesium alloys[J]. Front. Mater. Sci., 2018, 12(2): 198-206.
[8] Ling-Yu LI, Bin LIU, Rong-Chang ZENG, Shuo-Qi LI, Fen ZHANG, Yu-Hong ZOU, Hongwei (George) JIANG, Xiao-Bo CHEN, Shao-Kang GUAN, Qing-Yun LIU. In vitro corrosion of magnesium alloy AZ31 --- a synergetic influence of glucose and Tris[J]. Front. Mater. Sci., 2018, 12(2): 184-197.
[9] Feng LI, Yang LIU, Xu-Bo LI. Dynamic recrystallization behavior of AZ31 magnesium alloy processed by alternate forward extrusion[J]. Front. Mater. Sci., 2017, 11(3): 296-305.
[10] Tao JIN,Fan-mei KONG,Rui-qin BAI,Ru-liang ZHANG. Anti-corrosion mechanism of epoxy-resin and different content Fe2O3 coatings on magnesium alloy[J]. Front. Mater. Sci., 2016, 10(4): 367-374.
[11] Li-Da HOU,Zhen LI,Yu PAN,MuhammadIqbal SABIR,Yu-Feng ZHENG,Li LI. A review on biodegradable materials for cardiovascular stent application[J]. Front. Mater. Sci., 2016, 10(3): 238-259.
[12] Yu-Hong ZOU,Rong-Chang ZENG,Qing-Zhao WANG,Li-Jun LIU,Qian-Qian XU,Chuang WANG,Zhiwei LIU. Blood compatibility of zinc–calcium phosphate conversion coating on Mg–1.33Li–0.6Ca alloy[J]. Front. Mater. Sci., 2016, 10(3): 281-289.
[13] Lan-Yue CUI,Rong-Chang ZENG,Xiao-Xiao ZHU,Ting-Ting PANG,Shuo-Qi LI,Fen ZHANG. Corrosion resistance of biodegradable polymeric layer-by-layer coatings on magnesium alloy AZ31[J]. Front. Mater. Sci., 2016, 10(2): 134-146.
[14] Xiao-Li ZHANG,Shan-Hu BAO,Yun-Chuan XIN,Xun CAO,Ping JIN. Optical switching properties of Pd--Ni thin-film top-capped switchable mirrors[J]. Front. Mater. Sci., 2015, 9(3): 227-233.
[15] Cen CHEN,Wei YANG,Dan-Tong WANG,Chao-Long CHEN,Qing-Ye ZHUANG,Xiang-Dong KONG. A modified spontaneous emulsification solvent diffusion method for the preparation of curcumin-loaded PLGA nanoparticles with enhanced in vitro anti-tumor activity[J]. Front. Mater. Sci., 2014, 8(4): 332-342.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed