Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2015, Vol. 9 Issue (2) : 132-140    https://doi.org/10.1007/s11706-015-0281-0
RESEARCH ARTICLE
Conductivity enhancement by controlled percolation of inorganic salt in multiphase hexanoyl chitosan/polystyrene polymer blends
Tan WINIE(),Nur Syuhada MOHD SHAHRIL
Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Malaysia
 Download: PDF(3148 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Hexanoyl chitosan and polystyrene blends are immiscible by the elucidation of the glass transition temperature (Tg) as well as the viscometric and morphological analyses. Selective localization of the lithium salt in hexanoyl chitosan phase as the percolation pathway enhanced the conductivity in the blends as compared to the neat hexanoyl chitosan. The ionic conductivity of a polymer electrolyte is described by σ = enμ. Thus, estimation of charge carrier density (n) and mobility (μ) is important in order to assess the performance. In this work, these parameters are calculated using impedance spectroscopy and FTIR.

Keywords hexanoyl chitosan      polystyrene      polymer electrolyte      conductivity      percolation pathway     
Corresponding Author(s): Tan WINIE   
Online First Date: 24 April 2015    Issue Date: 23 July 2015
 Cite this article:   
Tan WINIE,Nur Syuhada MOHD SHAHRIL. Conductivity enhancement by controlled percolation of inorganic salt in multiphase hexanoyl chitosan/polystyrene polymer blends[J]. Front. Mater. Sci., 2015, 9(2): 132-140.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-015-0281-0
https://academic.hep.com.cn/foms/EN/Y2015/V9/I2/132
Fig.1  Nyquist plot for a parallel combination of a resistor and a CPE that are connected in series with another CPE.
Fig.2  The variation of room temperature conductivity as a function of mass fraction of polystyrene, WPS at fixed amount of salt.
Fig.3  Polar optical microscope images of (a) neat hexanoyl chitosan, (b) neat polystyrene, and hexanoyl chitosan/polystyrene blends at (c) 90:10, (d) 80:20, (e) 70:30, (f) 60:40 and (g) 50:50.
Fig.4  Room temperature conductivity performance for hexanoyl chitosan/polystyrene blends (80:20) (a) and neat hexanoyl chitosan (b).
Fig.5  Glass transition temperature as a function of mass fraction of lithium in neat polymers and their blends. Dotted line represents the linear regression curve after Eq. (12).
WLi Hexanoyl chitosan Polystyrene W Li H-Chi Δ W Li H-Chi
WH-Chi Tg /oC WPS Tg /oC
0.00 0.800 -34 0.200 102 - 0.000
0.03 0.776 -33 0.194 102 0.122 0.092
0.05 0.760 -32 0.190 102 0.143 0.093
0.07 0.744 -30 0.186 102 0.184 0.114
0.12 0.704 -29 0.176 102 0.204 0.084
0.15 0.680 -27 0.170 102 0.245 0.095
0.20 0.640 -25 0.160 102 0.286 0.086
Tab.1  The Tg, mass fraction of lithium (WLi), mass fraction of hexanoyl chitosan (WH-Chi), mass fraction of polystyrene (WPS), mass fraction of lithium in hexanoyl chitosan phase ( W Li H-Chi ) and the increase of lithium concentration in hexanoyl chitosan in the blend ( Δ W Li H-Chi ) for the hexanoyl chitosan/polystyrene blends at 80:20
Fig.6  Nyquist plot and the corresponding fitted line for hexanoyl chitosan/polystyrene blends (80:20) with WLi = 0.20.
Fig.7  Frequency dependence of dielectric constant, ?r for hexanoyl chitosan/polystyrene blends (80:20)-LiCF3SO3 electrolyte system.
WLi ?r (at 800 kHz) Q2 /F-1 τ2 /s-1 D /(cm2·s-1) μ /(cm2·V-1·s-1) n /cm-3
0.03 2.37 6.00×10-3 3.06×10-13 2.46×10-9 9.44×10-8 5.05×1015
0.05 2.56 5.10×10-5 6.37×10-9 1.91×10-9 7.32×10-8 5.65×1015
0.07 2.70 4.00×10-7 6.37×10-4 3.46×10-10 1.32×10-8 9.77×1016
0.12 3.31 3.00×10-7 1.06×10-3 5.54×10-10 2.12×10-8 1.31×1018
0.15 5.60 4.00×10-7 4.55×10-4 2.08×10-9 7.98×10-8 1.53×1018
0.20 8.67 1.10×10-6 1.59×10-5 1.89×10-8 7.23×10-7 9.53×1018
Tab.2  The values of ?r, Q2, τ2, D, μ and n obtained from the impedance spectroscopy method for the hexanoyl chitosan/polystyrene blends (80:20)–LiCF3SO3 electrolyte system
Fig.8  Plots of the charge carrier (a) number density, (b) mobility and (c) diffusion coefficient as a function of the salt content.
WLi ?f /%a) VT /cm3 n /cm-3 μ /(cm2·V-1·s-1) D /(cm2·s-1)
0.03 29 0.574 2.93×1017 1.63×10-9 4.25×10-11
0.05 29 0.579 5.02×1016 8.24×10-9 2.15×10-10
0.07 31 0.585 7.57×1016 1.71×10-8 4.47×10-10
0.12 32 0.601 1.08×1018 2.59×10-8 6.75×10-10
0.15 34 0.612 1.99×1018 6.14×10-8 1.60×10-9
0.20 54 0.631 1.55×1019 4.44×10-7 1.16×10-8
Tab.3  The values of ?f, VT, n, μ and D obtained from the FTIR method for the hexanoyl chitosan/polystyrene blends (80:20)–LiCF3SO3 electrolyte system
1 Zhou X, Yin Y, Wang Z, . Effect of hot pressing on the ionic conductivity of the PEO/LiCF3SO3 based electrolyte membranes. Solid State Ionics, 2011, 196(1): 18–24
2 Tsutsumi H, Suzuki A. Cross-linked poly(oxetane) matrix for polymer electrolyte containing lithium ions. Solid State Ionics, 2014, 262: 761–764
3 Wetjen M, Kim G T, Joost M, . Temperature dependence of electrochemical properties of cross-linked poly(ethylene oxide)-lithium bis(trifluoromethanesulfonyl)imide-N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide solid polymer electrolytes for lithium batteries. Electrochimica Acta, 2013, 87: 779–787
4 Wu H Y, Chen Y H, Saikia D, . Synthesis, structure and electrochemical characterization, and dynamic properties of double core branched organic–inorganic hybrid electrolytes membranes. Journal of Membrane Science, 2013, 447: 274–286
5 Zheng T, Zhou Q, Li Q, . A new branched copolyether-based polymer electrolyte for lithium batteries. Solid State Ionics, 2014, 259: 9–13
6 Barandiaran I, Cappelletti A, Strumia M, . Generation of nanocomposites based on (PMMA–b-PCL)-grafted Fe2O3 nanoparticles and PS–b-PCL block copolymer. European Polymer Journal, 2014, 58: 226–232
7 Sannigrahi A, Takamuku S, Jannasch P. Block copolymers combining semi-fluorinated poly(arylene ether) and sulfonated poly(arylene ether sulfone) segments for proton exchange membranes. International Journal of Hydrogen Energy, 2014, 39(28): 15718–15727
8 Rakkapao N, Vao-soongnern V, Masubuchi Y, . Miscibility of chitosan/poly(ethylene oxide) blends and effect of doping alkali and alkali earth metal ions on chitosan/PEO interaction. Polymer, 2011, 52(12): 2618–2627
9 Wang S, Min K. Solid polymer electrolytes of blends of polyurethane and polyether modified polysiloxane and their ionic conductivity. Polymer, 2010, 51(12): 2621–2628
10 Cheng Q, Cui Z, Li J, . Preparation and performance of polymer electrolyte based on poly(vinylidene fluoride)/polysulfone blend membrane via thermally induced phase separation process for lithium ion battery. Journal of Power Sources, 2014, 266: 401–413
11 Reddeppa N, Sharma A K, Rao V V R N, . AC conduction mechanism and battery discharge characteristics of (PVC/PEO) polyblend films complexed with potassium chloride. Measurement, 2014, 47: 33–41
12 Fan L, Dang Z, Nan C W, . Thermal, electrical and mechanical properties of plasticized polymer electrolytes based on PEO/P(VDF-HFP) blends. Electrochimica Acta, 2002, 48(2): 205–209
13 Choi B K, Kim Y W, Shin H K. Ionic conduction in PEO–PAN blend polymer electrolytes. Electrochimica Acta, 2000, 45(8-9): 1371–1374
14 Rajendran S, Kannan R, Mahendran O. Ionic conductivity studies in poly(methylmethacrylate)–polyethlene oxide hybrid polymer electrolytes with lithium salts. Journal of Power Sources, 2001, 96(2): 406–410
15 Chandra S, Tolpadi S K, Hashmi S A. Transient ionic current measurement of ionic mobilities in a few proton conductors. Solid State Ionics, 1988, 28-30: 651–655
16 Watanabe M, Nagano S, Sanui K, . Estimation of Li+ transport number in polymer electrolytes by the combination of complex impedance and potentiostatic polarization measurements. Solid State Ionics, 1988, 28-30: 911–917
17 Hayamizu K, Akiba E, Bando T, 1H, 7Li and 19F nuclear magnetic resonance and ionic conductivity studies for liquid electrolytes composed of glymes and polyetheneglycol dimethyl ethers of CH3O(CH2CH2O)nCH3 (n = 3–50) doped with LiN(SO2CF3)2. The Journal of Chemical Physics, 2002, 117(12): 5929–5939
18 Williamson M J, Southall J P, Hubbard H V St A, . NMR measurements of ionic mobility in model polymer electrolyte solutions. Electrochimica Acta, 1998, 43(10-11): 1415–1420
19 Bandara T M W J, Dissanayake M A K L, Albinsson I, . Mobile charge carrier concentration and mobility of a polymer electrolyte containing PEO and Pr4N+I- using electrical and dielectric measurements. Solid State Ionics, 2011, 189(1): 63–68
20 Arof A K, Amirudin S, Yusof S Z, . A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Physical Chemistry Chemical Physics, 2014, 16(5): 1856–1867
21 Vijayakumar M, Selvasekarapandian S, Jayanthi D, . Effect of annealing on Li2O–TiO2–V2O5 electrolyte materials. Solid State Ionics, 2002, 154-155: 773–777
22 J?nsson M, Welch K, Hamp S, . Bacteria counting with impedance spectroscopy in a micro probe station. The Journal of Physical Chemistry B, 2006, 110(20): 10165–10169
23 Klein R J, Zhang S, Dou S, . Modeling electrode polarization in dielectric spectroscopy: Ion mobility and mobile ion concentration of single-ion polymer electrolytes. The Journal of Chemical Physics, 2006, 124(14): 144903–144908
24 Schütt H J. Determination of the free ionic carrier concentration: A discussion of different methods. Solid State Ionics, 1994, 70-71: 505–510
25 Winie T, Arof A K. Impedance Spectroscopy. Basic Concepts and Application for Electrical Evaluation of Polymer Electrolytes: Physical Chemistry of Macromolecules. 1st ed. USA: Apple Academic Press, 2014, 335–363
26 Linford R G. Solid State Ionics Devices. Singapore: World Scientific, 1988, 551–571
27 Zong Z, Kimura Y, Takahashi M, . Characterization of chemical and solid state structure of acylated chitosan. Polymer, 2000, 41(3): 899–906
28 Winie T, Shahril N S M, Chan C H, . Selective localization of lithium trifluoromethanesulfonate in the blend of hexanoyl chitosan and polystyrene. High Performance Polymers, 2014, 26(6): 666–671
29 Petrowsky M, Frech R. Concentration dependence of ionic transport in dilute organic electrolyte solutions. The Journal of Physical Chemistry B, 2008, 112(28): 8285–8290
30 Ericson H, Svanberg C, Brodin A, . Poly(methyl methacrylate)-based protonic gel electrolytes: a spectroscopic study. Electrochimica Acta, 2000, 45(8-9): 1409–1414
[1] Rui ZHAO, Weikai LI, Tian WANG, Ke ZHAN, Zheng YANG, Ya YAN, Bin ZHAO, Junhe YANG. Fabrication of Cu/graphite film/Cu sandwich composites with ultrahigh thermal conductivity for thermal management applications[J]. Front. Mater. Sci., 2020, 14(2): 188-197.
[2] Jun ZHAO, Hang ZHAN, Hai Tao CHEN, Jian Nong WANG. Preparation and thermal properties of layered porous carbon nanotube/epoxy resin composite films[J]. Front. Mater. Sci., 2019, 13(4): 382-388.
[3] Ram Sevak SINGH, Anurag GAUTAM, Varun RAI. Graphene-based bipolar plates for polymer electrolyte membrane fuel cells[J]. Front. Mater. Sci., 2019, 13(3): 217-241.
[4] Chaoyuan LIU, Zhongbing HUANG, Ximing PU, Lei SHANG, Guangfu YIN, Xianchun CHEN, Shuang CHENG. Fabrication of carboxylic graphene oxide-composited polypyrrole film for neurite growth under electrical stimulation[J]. Front. Mater. Sci., 2019, 13(3): 258-269.
[5] Guangyu DUAN, Yan WANG, Junrong YU, Jing ZHU, Zuming HU. Improved thermal conductivity and dielectric properties of flexible PMIA composites with modified micro- and nano-sized hexagonal boron nitride[J]. Front. Mater. Sci., 2019, 13(1): 64-76.
[6] U. Sandhya SHENOY, A. Nityananda SHETTY. A simple single-step approach towards synthesis of nanofluids containing cuboctahedral cuprous oxide particles using glucose reduction[J]. Front. Mater. Sci., 2018, 12(1): 74-82.
[7] Mukesh Kumar MISHRA,Srikanta MOHARANA,Banarji BEHERA,Ram Naresh MAHALING. Surface functionalization of BiFeO3: A pathway for the enhancement of dielectric and electrical properties of poly(methyl methacrylate)--BiFeO3 composite films[J]. Front. Mater. Sci., 2017, 11(1): 82-91.
[8] Yu XIA,Liang MA,Hui LU,Xian-Ping WANG,Yun-Xia GAO,Wang LIU,Zong ZHUANG,Li-Jun GUO,Qian-Feng FANG. Preparation and enhancement of ionic conductivity in Al-added garnet-like Li6.8La3Zr1.8Bi0.2O12 lithium ionic electrolyte[J]. Front. Mater. Sci., 2015, 9(4): 366-372.
[9] Bo-Ju DONG,Qiang LU. Conductive Au nanowires regulated by silk fibroin nanofibers[J]. Front. Mater. Sci., 2014, 8(1): 102-105.
[10] Santosh Kumar SATPATHY, Nilaya Kumar MOHANTY, Ajay Kumar BEHERA, Banarji BEHERA, Pratibindhya NAYAK. Electrical conductivity of Gd doped BiFeO3---PbZrO3 composite[J]. Front Mater Sci, 2013, 7(3): 295-301.
[11] Yun-Xia GAO, Xian-Ping WANG, Qin-Xing SUN, Zhong ZHUANG, Qian-Feng FANG. Electrical properties of garnet-like lithium ionic conductors Li5+xSrxLa3--xBi2O12 fabricated by spark plasma sintering method[J]. Front Mater Sci, 2012, 6(3): 216-224.
[12] Yan-Hao DONG, Chang-An WANG, Liang-Fa HU, Jun ZHOU. Numerical calculations of effective thermal conductivity of porous ceramics by image-based finite element method[J]. Front Mater Sci, 2012, 6(1): 79-86.
[13] YU Zhi-ming, FANG Mei, XIAO Zhu. Effects of enhanced nucleation on the growth and thermal performance of diamond films deposited on BeO by hot filament CVD technique[J]. Front. Mater. Sci., 2008, 2(4): 369-374.
[14] ZHENG Feihu, ZHANG Yewen, GONG Bin, CHEN Lingyan, XU Jiaqiang, WANG Chuanshan. Space charge dynamics in electron beam-irradiated PMMA[J]. Front. Mater. Sci., 2007, 1(1): 109-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed