Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2015, Vol. 9 Issue (2) : 206-210    https://doi.org/10.1007/s11706-015-0297-5
RESEARCH ARTICLE
Relationship between microstructure and magnetic domain structure of Nd--Fe--B melt-spun ribbon magnets
Masaaki TAKEZAWA(),Hiroyuki TANEDA,Yuji MORIMOTO
Department of Applied Science for Integrated System Engineering, Faculty of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu, Fukuoka 804-8550, Japan
 Download: PDF(1354 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The relation between the microstructure, observed using an electron probe microanalyzer, and the domain structure, observed using a Kerr microscope, was established to evaluate the effects of hot rolling and the addition of Ti--C on the c-axis orientation and the magnetization process of hot-rolled Nd--Fe--B--Ti--C melt-spun ribbons. The addition of Ti--C promotes the c-axis orientation and high coercivity in the ribbons. Elemental mapping suggests a uniform elemental distribution; however, an uneven distribution of Ti was observed in an enlarged grain with Ti-enriched points inside the grain. The reversal domains that nucleated at the Ti-enriched point inside the grain cause low coercivity.

Keywords magnetic domain      microstructure      Kerr effect microscope      magneto-optical effect      Nd--Fe--B permanent magnet     
Corresponding Author(s): Masaaki TAKEZAWA   
Online First Date: 21 April 2015    Issue Date: 23 July 2015
 Cite this article:   
Masaaki TAKEZAWA,Hiroyuki TANEDA,Yuji MORIMOTO. Relationship between microstructure and magnetic domain structure of Nd--Fe--B melt-spun ribbon magnets[J]. Front. Mater. Sci., 2015, 9(2): 206-210.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-015-0297-5
https://academic.hep.com.cn/foms/EN/Y2015/V9/I2/206
Fig.1  XRD patterns of the Nd13(Fe0.95Ti0.05)81B5.4C0.6 ribbon: (a) subroll surface; (b) main wheel surface.
Fig.2  Magnetization curve of the Nd13(Fe0.95Ti0.05)81B5.4C0.6 ribbon.
Fig.3  (a) Compositional SEM image and EPMA elemental maps of (b) Fe, (c) Nd, and (d) Ti in the Nd–Fe–B–Ti–C ribbon.
Fig.4  Optical microscopy image and the elemental map of Ti at the enlarged grain.
Fig.5  EPMA elemental maps of Fe, Nd, B, and Ti at the enlarged grain.
Fig.6  Domain images of the cross-sectional surface: (a) +14 kOe; (b) +9.5 kOe; (c) +4.0 kOe; (d) 0; (e) -5 kOe; (f) -13.5 kOe.
Fig.7  Magnetization reversal area and Ti distribution.
1 Hirosawa S, Nishiuchi T, Nozawa N, . Recent efforts toward rare-metal-free permanent magnets in Japan. Proceedings of the 21st Workshop on Rare-Earth Permanent Magnets and their Applications, Bled, 2010, 187–192
2 Sugimoto S. Recent trend of the researches for reducing dysprosium usage in an Nd–Fe–B sintered magnet. Journal of the Japan Society of Powder and Powder Metallurgy, 2010, 57(6): 395–400
3 Sepehri-Amin H, Ohkubo T, Nishiuchi T, . Coercivity enhancement of hydrogenation-disproportionation-desorption-recombination processed Nd–Fe–B powders by the diffusion of Nd–Cu eutectic alloys. Scripta Materialia, 2010, 63(11): 1124–1127
4 Liu M, Sun Y, Han G B, . Dependence of anisotropy and coercivity on microstructure in HDDR Nd–Fe–B magnet. Journal of Alloys and Compounds, 2009, 478(1-2): 303–307
5 Li W F, Ohkubo T, Hono K, . The role of grain boundaries in the coercivity of hydrogenation disproportionation desorption recombination processed Nd–Fe–B powders. Journal of Applied Physics, 2009, 105: 07A706
6 Thompson P, Gutfleisch O, Chapman J N, . A comparison of the micromagnetic and microstructural properties of four NdFeB-type materials processed by the HDDR route. Journal of Magnetism and Magnetic Materials, 1999, 202(1): 53–61
7 Mishra R K, Lee R W. Microstructure, domain walls, and magnetization reversal in hot-pressed Nd–Fe–B magnets. Applied Physics Letters, 1986, 48(11): 733–735
8 Lee R W, Brewer E G, Schaffel N. Processing of neodymium–iron–boron melt-spun ribbons to fully dense magnets. IEEE Transactions on Magnetics, 1985, 21(5): 1958–1963
9 Kuji T, O'Handley R C, Grant N J. Magnetic anisotropy of Nd15Fe77B8 flakes made by twin-roller quenching. Applied Physics Letters, 1989, 54(24): 2487–2489
10 Kuji T, O'Handley R C, Grant N J. Method for making polycrystalline flakes of magnetic materials having strong grain orientation. US Patent, 5049335, 1991
11 Takezawa M, Nakanishi Y, Morimoto Y, . Investigation of easy axis orientation of Nd–Fe–B melt-spun ribbons produced by hot rolling and influence of Ti–C addition. Journal of Applied Physics, 2012, 111: 07A703
[1] Chengzhi LUO, Guanghui LIU, Min ZHANG. Electric-field-induced microstructure modulation of carbon nanotubes for high-performance supercapacitors[J]. Front. Mater. Sci., 2019, 13(3): 270-276.
[2] Abdollah SABOORI, Matteo PAVESE, Claudio BADINI, Paolo FINO. Development of Al- and Cu-based nanocomposites reinforced by graphene nanoplatelets: Fabrication and characterization[J]. Front. Mater. Sci., 2017, 11(2): 171-181.
[3] Qianli HUANG,Ningmin HU,Xing YANG,Ranran ZHANG,Qingling FENG. Microstructure and inclusion of Ti–6Al–4V fabricated by selective laser melting[J]. Front. Mater. Sci., 2016, 10(4): 428-431.
[4] Rui GAO,Wen-jun GE,Shu MIAO,Tao ZHANG,Xian-ping WANG,Qian-feng FANG. Hot rolling and annealing effects on the microstructure and mechanical properties of ODS austenitic steel fabricated by electron beam selective melting[J]. Front. Mater. Sci., 2016, 10(1): 73-79.
[5] Qianli HUANG,Xujie LIU,Xing YANG,Ranran ZHANG,Zhijian SHEN,Qingling FENG. Specific heat treatment of selective laser melted Ti–6Al–4V for biomedical applications[J]. Front. Mater. Sci., 2015, 9(4): 373-381.
[6] Yongze CAO,Qiang WANG,Guojian LI,Yonghui MA,Jiaojiao DU,Jicheng HE. Effects of different magnetic flux densities on microstructure and magnetic properties of molecular-beam-vapor-deposited nanocrystalline Fe64Ni36 thin films[J]. Front. Mater. Sci., 2015, 9(2): 163-169.
[7] Peng-Cheng XIA,Feng-Wen CHEN,Kun XIE,Ling QIAO,Jin-Jiang YU. Influence of microstructures on thermal fatigue property of a nickel-base superalloy[J]. Front. Mater. Sci., 2015, 9(1): 85-92.
[8] Ya-Ming WANG,Jun-Wei GUO,Yun-Feng WU,Yan LIU,Jian-Yun CAO,Yu ZHOU,De-Chang JIA. Biocorrosion resistance of coated magnesium alloy by microarc oxidation in electrolyte containing zirconium and calcium salts[J]. Front. Mater. Sci., 2014, 8(3): 295-306.
[9] Zhen-Tao YU,Ming-Hua ZHANG,Yu-Xing TIAN,Jun CHENG,Xi-Qun MA,Han-Yuan LIU,Chang WANG. Designation and development of biomedical Ti alloys with finer biomechanical compatibility in long-term surgical implants[J]. Front. Mater. Sci., 2014, 8(3): 219-229.
[10] Zhi-Wen CHEN, Chan-Hung SHEK, C. M. Lawrence WU, Joseph K. L. LAI. Recent research situation in tin dioxide nanomaterials: synthesis, microstructures, and properties[J]. Front Mater Sci, 2013, 7(3): 203-226.
[11] Wei YAN, Wei WANG, Yi-Yin SHAN, Ke YANG. Microstructural stability of 9--12%Cr ferrite/martensite heat-resistant steels[J]. Front Mater Sci, 2013, 7(1): 1-27.
[12] Hai-Jun LEI, Bin LIU, Dai-Ning FANG, . The coefficient of thermal expansion of biomimetic composites[J]. Front. Mater. Sci., 2010, 4(3): 234-238.
[13] Ping HU, Wei YAN, Wei WANG, Yi-yin SHAN, Ke YANG, Wei SHA, Zhan-li GUO, . Study on Laves phase in an advanced heat-resistant steel[J]. Front. Mater. Sci., 2009, 3(4): 434-441.
[14] Ning CAO, Zhen-yi FEI, Yong-xin QI, Wen-wen CHEN, Lu-lu SU, Qi WANG, Mu-sen LI, . Characterization and tribological application of diamond-like carbon (DLC) films prepared by radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) technique[J]. Front. Mater. Sci., 2009, 3(4): 409-414.
[15] He-sheng LI, Yong-xin QI, Yuan-pei ZHANG, Mu-sen LI. Fracture behavior of HPHT synthetic diamond with micrometers metallic inclusions[J]. Front Mater Sci Chin, 2009, 3(2): 218-223.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed