Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2015, Vol. 9 Issue (4) : 382-391    https://doi.org/10.1007/s11706-015-0314-8
RESEARCH ARTICLE
Hierarchical charge distribution controls self-assembly process of silk in vitro
Yi ZHANG1,2,Cencen ZHANG1,2,4,Lijie LIU1,2,David L. KAPLAN1,3,Hesun ZHU5,Qiang LU1,2,*()
1. National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
2. College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
3. Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
4. Textile College, Henan Institute of Engineering, Zhengzhou 450007, China
5. Research Center of Materials Science, Beijing Institute of Technology, Beijing 100081, China
 Download: PDF(2265 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Silk materials with different nanostructures have been developed without the understanding of the inherent transformation mechanism. Here we attempt to reveal the conversion road of the various nanostructures and determine the critical regulating factors. The regulating conversion processes influenced by a hierarchical charge distribution were investigated, showing different transformations between molecules, nanoparticles and nanofibers. Various repulsion and compressive forces existed among silk fibroin molecules and aggregates due to the exterior and interior distribution of charge, which further controlled their aggregating and deaggregating behaviors and finally formed nanofibers with different sizes. Synergistic action derived from molecular mobility and concentrations could also tune the assembly process and final nanostructures. It is suggested that the complicated silk fibroin assembly processes comply a same rule based on charge distribution, offering a promising way to develop silk-based materials with designed nanostructures.

Keywords self-assembly      charge      nanostructure      nanofiber      silk     
Corresponding Author(s): Qiang LU   
Online First Date: 26 October 2015    Issue Date: 12 November 2015
 Cite this article:   
Yi ZHANG,Cencen ZHANG,Lijie LIU, et al. Hierarchical charge distribution controls self-assembly process of silk in vitro[J]. Front. Mater. Sci., 2015, 9(4): 382-391.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-015-0314-8
https://academic.hep.com.cn/foms/EN/Y2015/V9/I4/382
Fig.1  AFM images and height map of silk fibroin deposited from fresh solutions during diluting process. The concentrations of the diluted solutions were as follows: (a)(a') 0.3%; (b)(b') 0.03%; (c)(c') 0.003%; (d)(d') 0.0003%.
Fig.2  The (a) volumes, (b) zeta potentials and (c) CD curves of silk fibroin in fresh solutions during diluting process. The concentrations of the diluted solutions were as follows: 0.3%; 0.03%; 0.003%; 0.0003%.
Fig.3  Nanostructure changes of silk fibroin in diluted solution with concentration of 0.003% when cultured at 4°C for different time. The samples were as follows: (a)(a') 0 d; (b)(b') 2 d; (c)(c') 4 d; (d)(d') 8 d; (e)(e') 16 d; (f)(f') 24 d.
Fig.4  Nanostructure changes of silk fibroin when the solution with concentration of 0.003% was concentrated to 0.3% at 60°C during a concentrated process. The samples were as follows: (a)(a') silk concentration 0.003%, concentrating time 0 d; (b)(b') silk concentration 0.009%, concentrating time 0.5 d; (c)(c') silk concentration 0.03%, concentrating time 2 d; (d)(d') silk concentration 0.09%, concentrating time 2.5 d; (e)(e') silk concentration 0.3%, concentrating time 4 d.
Fig.5  AFM images and height map of the silk nanoparticle in aqueous solution during diluting process: (a)(a') silk nanoparticle solution with concentration of 0.03%, and (b)(b') the nanoparticle solution was diluted to 0.003% with distilled water. The silk nanoparticle solution was prepared by slowly concentrating the fresh solution to about 20% over 48 h at 60°C and then diluted to 0.03%.
Fig.6  Scheme 1 The negative charge-tuned self-assembly process of silk fibroin in vitro.
Fig.7  Nanostructure changes of silk fibroin in the fresh solution with concentration of 0.003% when cultured at (a)(b)(c)(d)(e)(f) 25°C and (a')(b')(c')(d')(e')(f') 60°C for different time. The samples were as follows: (a)(a') 0 d; (b)(b') 2 d; (c)(c') 4 d; (d)(d') 8 d; (e)(e') 16 d; and (f)(f') 24 d.
Fig.8  Nanostructure changes of silk fibroin in the fresh solution with concentration of 0.03% when cultured at (a)(b)(c)(d)(e)(f) 4°C, (a')(b')(c')(d')(e')(f') 25°C and (a'')(b'')(c'')(d'')(e'')(f'') 60°C for different time. The samples were as follows: (a)(a')(a'') 0 d; (b)(b')(b'') 2 d; (c)(c')(c'') 4 d; (d)(d')(d'') 8 d; (e)(e')(e'') 16 d; and (f)(f')(f'') 24 d.
Fig.9  Nanostructure changes of silk fibroin in the fresh solution with concentration of 0.3% when cultured at (a)(b)(c)(d)(e)(f) 4°C, (a')(b')(c')(d')(e')(f') 25°C and (a'')(b'')(c'')(d'')(e'')(f'') 60°C for different time. The samples were as follows: (a)(a')(a'') 0 d; (b)(b')(b'') 2 d; (c)(c')(c'') 4 d; (d)(d')(d'') 8 d; (e)(e')(e'') 16 d; and (f)(f')(f'') 24 d.
1 Vepari  C, Kaplan  D L. Silk as a biomaterial. Progress in Polymer Science, 2007, 32(8−9): 991–1007
2 Shao  Z, Vollrath  F. Surprising strength of silkworm silk. Nature, 2002, 418(6899): 741
3 Patra  C, Talukdar  S, Novoyatleva  T, . Silk protein fibroin from Antheraea mylitta for cardiac tissue engineering. Biomaterials, 2012, 33(9): 2673–2680
4 Lu  Q, Wang  X, Lu  S, . Nanofibrous architecture of silk fibroin scaffolds prepared with a mild self-assembly process. Biomaterials, 2011, 32(4): 1059–1067
5 Hofer  M, Winter  G, Myschik  J. Recombinant spider silk particles for controlled delivery of protein drugs. Biomaterials, 2012, 33(5): 1554–1562
6 Lammel  A S, Hu  X, Park  S H, . Controlling silk fibroin particle features for drug delivery. Biomaterials, 2010, 31(16): 4583–4591
7 Tsioris  K, Tilburey  G E, Murphy  A R, . Functionalized-silk-based active optofluidic devices. Advanced Functional Materials, 2010, 20(7): 1083–1089
8 Amsden  J J, Domachuk  P, Gopinath  A, . Rapid nanoimprinting of silk fibroin films for biophotonic applications. Advanced Materials, 2010, 22(15): 1746–1749
9 Lawrence  B D, Cronin-Golomb  M, Georgakoudi  I, . Bioactive silk protein biomaterial systems for optical devices. Biomacromolecules, 2008, 9(4): 1214–1220
10 Keten  S, Xu  Z, Ihle  B, . Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk. Nature Materials, 2010, 9(4): 359–367
11 Kharlampieva  E, Kozlovskaya  V, Wallet  B, . Co-cross-linking silk matrices with silica nanostructures for robust ultrathin nanocomposites. ACS Nano, 2010, 4(12): 7053–7063
12 Lee  S M, Pippel  E, Gösele  U, . Greatly increased toughness of infiltrated spider silk. Science, 2009, 324(5926): 488–492
13 Du  N, Liu  X Y, Narayanan  J, . Design of superior spider silk: from nanostructure to mechanical properties. Biophysical Journal, 2006, 91(12): 4528–4535
14 Du  N, Yang  Z, Liu  X Y, . Structural origin of the strain-hardening of spider silk. Advanced Functional Materials, 2011, 21(4): 772–778
15 Putthanarat  S, Stribeck  N, Fossey  S A, . Investigation of the nanofibrils of silk fibers. Polymer, 2000, 41(21): 7735–7747
16 Nova  A, Keten  S, Pugno  N M, . Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils. Nano Letters, 2010, 10(7): 2626–2634
17 Keten  S, Buehler  M J. Nanostructure and molecular mechanics of spider dragline silk protein assemblies. Journal of the Royal Society Interface, 2010, 7(53): 1709–1721
18 Hakimi  O, Knight  D P, Vollrath  F, . Spider and mulberry silkworm silks as a compatible biomaterials. Composites Part B: Engineering, 2007, 38(3): 324–337
19 Shao  Z, Vollrath  F, Yang  Y, . Structure and behavior of regenerated spider silk. Macromolecules, 2003, 36(4): 1157–1161
20 Seidel  A, Liivak  O, Calve  S, . Regenerated spider silk: Processing, properties, and structure. Macromolecules, 2000, 33(3): 775–780
21 Wang  X, Yucel  T, Lu  Q, . Silk nanospheres and microspheres from silk/PVA blend films for drug delivery. Biomaterials, 2010, 31(6): 1025–1035
22 Kluge  J A, Rabotyagova  O, Leisk  G G, . Spider silks and their applications. Trends in Biotechnology, 2008, 26(5): 244–251
23 Zhang  S, Marini  D M, Hwang  W, . Design of nanostructured biological materials through self-assembly of peptides and proteins. Current Opinion in Chemical Biology, 2002, 6(6): 865–871
24 Gong  Z, Yang  Y, Huang  L, . Formation kinetics and fractal characteristics of regenerated silk fibroin alcogel developed from nanofibrillar network. Soft Matter, 2010, 6(6): 1217–1223
25 Zhang  C, Song  D, Lu  Q, . Flexibility regeneration of silk fibroin in vitro. Biomacromolecules, 2012, 13(7): 2148–2153
26 Bai  S, Zhang  X, Lu  Q, . Reversible hydrogel-solution system of silk with high β-sheet content. Biomacromolecules, 2014, 15(8): 3044–3051
27 Lu  Q, Zhu  H, Zhang  C, . Silk self-assembly mechanisms and control from thermodynamics to kinetics. Biomacromolecules, 2012, 13(3): 826–832
28 Bai  S, Liu  S, Zhang  C, . Controllable transition of silk fibroin nanostructures: an insight into in vitro silk self-assembly process. Acta Biomaterialia, 2013, 9(8): 7806–7813
29 Seib  F P, Jones  G T, Rnjak-Kovacina  J, . pH-dependent anticancer drug release from silk nanoparticles. Advanced Healthcare Materials, 2013, 2(12): 1606–1611
30 Xia  X X, Wang  M, Lin  Y, . Hydrophobic drug-triggered self-assembly of nanoparticles from silk-elastin-like protein polymers for drug delivery. Biomacromolecules, 2014, 15(3): 908–914
31 Yu  S, Chen  S, Chen  M, . Size-controllable anticancer drug loaded silk fibroin nanospheres. Journal of Controlled Release, 2013, 172(1): e68
32 Yu  S, Yang  W, Chen  S, . Floxuridine-loaded silk fibroin nanospheres. RSC Advances, 2014, 4(35): 18171–18177
33 Beun  L H, Storm  I M, Werten  M W T, . From micelles to fibers: balancing self-assembling and random coiling domains in pH-responsive silk-collagen-like protein-based polymers. Biomacromolecules, 2014, 15(9): 3349–3357
34 Qu  J, Wang  D, Wang  H, . Electrospun silk fibroin nanofibers in different diameters support neurite outgrowth and promote astrocyte migration. Journal of Biomedical Materials Research Part A, 2013, 101(9): 2667–2678
35 Cestari  M, Muller  V, Rodrigues  J H, . Preparing silk fibroin nanofibers through electrospinning: further heparin immobilization toward hemocompatibility improvement. Biomacromolecules, 2014, 15(5): 1762–1767
36 Zeng  L, Teng  W, Jiang  L, . Ordering recombinant silk-elastin-like nanofibers on the microscale. Applied Physics Letters, 2014, 104(3): 033702
37 He  J, Cheng  Y, Cui  S. Preparation and characterization of electrospun Antheraea pernyi silk fibroin nanofibers from aqueous solution. Journal of Applied Polymer Science, 2013, 128(2): 1081–1088
38 Rockwood  D N, Preda  R C, Yücel  T, . Materials fabrication from Bombyx mori silk fibroin. Nature Protocols, 2011, 6(10): 1612–1631
39 Inoue  S I, Magoshi  J, Tanaka  T, . Atomic force microscopy: Bombyx mori silk fibroin molecules and their higher order structure. Journal of Polymer Science Part B: Polymer Physics, 2000, 38(11): 1436–1439
40 Lu  Q, Huang  Y, Li  M, . Silk fibroin electrogelation mechanisms. Acta Biomaterialia, 2011, 7(6): 2394–2400
41 Zhang  F, Zuo  B, Fan  Z, . Mechanisms and control of silk-based electrospinning. Biomacromolecules, 2012, 13(3): 798–804
42 Bai  S, Zhang  W, Lu  Q, . Silk nanofiber hydrogels with tunable modulus to regulate nerve stem cell fate. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2014, 2(38): 6590–6600
43 Lu  G, Liu  S, Lin  S, .Silk porous scaffolds with nanofibrous microstructures and tunable properties. Colloids and Surface B: Biointerfaces, 2014, 120: 28–37
44 Lin  S, Lu  G, Liu  S, . Nanoscale control of silks for nanofibrous scaffold formation with improved porous structure. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2014, 2(17): 2622–2633
45 Dicko  C, Knight  D, Kenney  J M, . Structural conformation of spidroin in solution: a synchrotron radiation circular dichroism study. Biomacromolecules, 2004, 5(3): 758–767
46 Askarieh  G, Hedhammar  M, Nordling  K, . Self-assembly of spider silk proteins is controlled by a pH-sensitive relay. Nature, 2010, 465(7295): 236–238
47 Lammel  A, Schwab  M, Hofer  M, . Recombinant spider silk particles as drug delivery vehicles. Biomaterials, 2011, 32(8): 2233–2240
48 Schwarze  S, Zwettler  F U, Johnson  C M, . The N-terminal domains of spider of silk fibroin in solution. Nature Communications, 2013, 4(10)
49 Greving  I, Cai  M, Vollrath  F, . Shear-induced self-assembly of native silk proteins into fibrils studied by atomic force microscopy. Biomacromolecules, 2012, 13(3): 676–682
50 Oroudjev  E, Soares  J, Arcidiacono  S, . Segmented nanofibers of spider dragline silk: Atomic force microscopy and single-molecule force spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(Suppl 2): 6460–6465
51 Inoue  S, Tsuda  H, Tanaka  T, . Nanostructure of natural fibrous protein: In vitro nanofabric formation of Samia cynthia ricini wild silk sibroin by self-assembling. Nano Letters, 2003, 3(10): 1329–1332
52 Jin  H J, Kaplan  D L. Mechanism of silk processing in insects and spiders. Nature, 2003, 424(6952): 1057–1061
53 Foo  C W P, Bini  E, Hensman  J, . Role of pH and charge on silk protein assembly in insects and spiders. Applied Physics A: Materials Science & Processing, 2006, 82(2): 223–233
54 Zhao  L, Song  C, Zhang  M, . Bioinspired heterostructured bead-on-string fibers via controlling the wet-assembly of nanoparticles. Chemical Communications, 2014, 50(73): 10651–10654
[1] Wenxin WANG, Yang CHEN, Ning WANG, Zhiqiang DU, Martin JENSEN, Zihan AN, Xianfeng LI. Multifunction ZnO/carbon hybrid nanofiber mats for organic dyes treatment via photocatalysis with enhanced solar-driven evaporation[J]. Front. Mater. Sci., 2022, 16(4): 220623-.
[2] Zhiying ZHANG, Ting LIU, Juan LI, Yiyan GUO, Ruiqing LIANG, Jiangbo LU, Runguang SUN, Jun DONG. Regulation of cell morphology and viability using anodic aluminum oxide with custom-tailored structural parameters[J]. Front. Mater. Sci., 2022, 16(4): 220622-.
[3] Dandan LUO, Rui ZHANG, Shibo WANG, M. Zubair IQBAL, Ruibo ZHAO, Xiangdong KONG. Regulation effect of osteoblasts towards osteocytes by silk fibroin encapsulation[J]. Front. Mater. Sci., 2022, 16(4): 220617-.
[4] Xiaoyu MA, Guifeng CHEN, Xiaoming ZHANG, Taoyuan JIA, Weiqi ZHAO, Zhaojun MO, Heyan LIU, Xuefang DAI, Guodong LIU. Fabrication and growth mechanism of one-dimensional Heusler alloy nanostructures with different morphologies on anodic aluminum oxide template by magnetron sputtering[J]. Front. Mater. Sci., 2022, 16(3): 220615-.
[5] Wenqing ZHENG, Han SUN, Xinping LI, Shu ZHANG, Zhuoxun YIN, Wei CHEN, Yang ZHOU. Fe-doped NiCo2O4 hollow hierarchical sphere as an efficient electrocatalyst for oxygen evolution reaction[J]. Front. Mater. Sci., 2021, 15(4): 577-588.
[6] Roopa Kishore KAMPARA, Sonia T., Balamurugan D., Jeyaprakash B. G.. Formaldehyde vapour sensing property of electrospun NiO nanograins[J]. Front. Mater. Sci., 2021, 15(3): 416-430.
[7] Ning CHEN, Sidi LI, Xueping LI, Lixia LONG, Xubo YUAN, Xin HOU, Jin ZHAO. Functionalization of PEG-PMPC-based polymers for potential theranostic applications[J]. Front. Mater. Sci., 2021, 15(2): 280-290.
[8] Atta ur Rehman KHAN, Yosry MORSI, Tonghe ZHU, Aftab AHMAD, Xianrui XIE, Fan YU, Xiumei MO. Electrospinning: An emerging technology to construct polymer-based nanofibrous scaffolds for diabetic wound healing[J]. Front. Mater. Sci., 2021, 15(1): 10-35.
[9] Lei CHANG, Xiangrui LI, Xuhui TANG, He ZHANG, Ding HE, Yujun WANG, Jiayin ZHAO, Jingan LI, Jun WANG, Shijie ZHU, Liguo WANG, Shaokang GUAN. Micro-patterned hydroxyapatite/silk fibroin coatings on Mg--Zn--Y--Nd--Zr alloys for better corrosion resistance and cell behavior guidance[J]. Front. Mater. Sci., 2020, 14(4): 413-425.
[10] Biyu ZHOU, Junbo LI, Binzhong LU, Wenlan WU, Leitao ZHANG, Ju LIANG, Junpeng YI, Xin LI. Novel polyzwitterion shell with adaptable surface chemistry engineered to enhance anti-fouling and intracellular imaging of detonation nanodiamonds under tumor pHe[J]. Front. Mater. Sci., 2020, 14(4): 402-412.
[11] Dandan HAN, Jinhe WEI, Shanshan WANG, Yifan PAN, Junli XUE, Yen WEI. Feather-like NiCo2O4 self-assemble from porous nanowires as binder-free electrodes for low charge transfer resistance[J]. Front. Mater. Sci., 2020, 14(4): 450-458.
[12] Pengzhang LI, Chuanjin TIAN, Wei YANG, Wenyan ZHAO, Zhe LÜ. LaNiO3 modified with Ag nanoparticles as an efficient bifunctional electrocatalyst for rechargeable zinc--air batteries[J]. Front. Mater. Sci., 2019, 13(3): 277-287.
[13] Chengzhi YANG, Shikun CHEN, Huilan SU, Haoyue ZHANG, Jianfei TANG, Cuiping GUO, Fang SONG, Wang ZHANG, Jiajun GU, Qinglei LIU. Biocompatible, small-sized and well-dispersed gold nanoparticles regulated by silk fibroin fiber from Bombyx mori cocoons[J]. Front. Mater. Sci., 2019, 13(2): 126-132.
[14] Ge JU, Muhammad Arif KHAN, Huiwen ZHENG, Zhongxun AN, Mingxia WU, Hongbin ZHAO, Jiaqiang XU, Lei ZHANG, Salma BILAL, Jiujun ZHANG. Honeycomb-like polyaniline for flexible and folding all-solid-state supercapacitors[J]. Front. Mater. Sci., 2019, 13(2): 133-144.
[15] Mengna CHEN, Peiyuan ZENG, Yueying ZHAO, Zhen FANG. CoP nanoparticles enwrapped in N-doped carbon nanotubes for high performance lithium-ion battery anodes[J]. Front. Mater. Sci., 2018, 12(3): 214-224.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed