Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2015, Vol. 9 Issue (4) : 405-412    https://doi.org/10.1007/s11706-015-0317-5
RESEARCH ARTICLE
Chitosan-collagen/organomontmorillonite scaffold for bone tissue engineering
Xianshuo CAO1,Jun WANG2,Min LIU1,Yong CHEN1,Yang CAO1,Xiaolong YU1,*()
1. College of Materials and Chemical Engineering, Hainan University, Haikou 570228, China
2. College of Ocean, Hainan University, Haikou 570228, China
 Download: PDF(762 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A novel composite scaffold based on chitosan-collagen/organomontmo-rillonite (CS-COL/OMMT) was prepared to improve swelling ratio, biodegradation ratio, biomineralization and mechanical properties for use in tissue engineering applications. In order to expend the basal spacing, montmorillonite (MMT) was modified with sodium dodecyl sulfate (SDS) and was characterized by XRD, TGA and FTIR. The results indicated that the anionic surfactants entered into interlayer of MMT and the basal spacing of MMT was expanded to 3.85 nm. The prepared composite scaffolds were characterized by FTIR, XRD and SEM. The swelling ratio, biodegradation ratio and mechanical properties of composite scaffolds were also studied. The results demonstrated that the scaffold decreased swelling ratio, degradation ratio and improved mechanical and biomineralization properties because of OMMT.

Keywords chitosan (CS)      collagen (COL)      montmorillonite (MMT)      sodium dodecyl sulfate (SDS)     
Corresponding Author(s): Xiaolong YU   
Online First Date: 06 November 2015    Issue Date: 12 November 2015
 Cite this article:   
Xianshuo CAO,Jun WANG,Min LIU, et al. Chitosan-collagen/organomontmorillonite scaffold for bone tissue engineering[J]. Front. Mater. Sci., 2015, 9(4): 405-412.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-015-0317-5
https://academic.hep.com.cn/foms/EN/Y2015/V9/I4/405
Fig.1  FTIR spectra of CS, COL, MMT, OMMT, SDS and scaffolds.
Fig.2  XRD patterns of MMT, SDS, and OMMT.
Fig.3  TGA curves of MMT, SDS, OMMT, CS, COL, and scaffolds.
Fig.4  DSC curves of MMT, SDS, OMMT, CS, COL, and scaffolds.
Fig.5  SEM images of (a) CS-COL, (b) CS-COL/MMT, and (c) CS-COL/OMMT.
Fig.6  SEM-EDS images of (a) MMT and (b) OMMT.
Fig.7  Swelling ratios of the scaffolds in PBS.
Fig.8  Biodegradation behavior of the scaffolds.
Fig.9  Compressive stress–strain curves of scaffolds.
Fig.10  SEM images for mineralization of scaffolds in SBF after 7 d: (a) CS-COL; (b) CS-COL/MMT; (c) CS-COL/OMMT.
COLcollagen
CSchitosan
DSCdifferential scanning calorimetry
ECMextracellular matrix
EDSenergy dispersive spectroscopy
FTIRFourier transform infrared spectroscopy
GAGSglycosaminoglycans
MMTmontmorillonite
OMMTorganomontmorillonite
PBSphosphate buffered solution
SBFsimulated body fluid
SDstandard deviation
SDSsodium dodecyl sulfate
SEMscanning electron microscopy
TGAthermal gravity analysis
XRDX-ray powder diffraction
Tab.1  
1 Williams  D F. The Williams Dictionary of Biomaterials. Liverpool, UK: University Press, 1999
2 Peter  M, Ganesh  N, Selvamurugan  N, . Preparation and characterization of chitosan gelatin/nanohydroxyapatite composite scaffolds for tissue engineering applications. Carbohydrate Polymers, 2010, 80(3): 687–694
3 Brandi  J, Ximenes  J C, Ferreira  M, . Gelcasting of alumina-chitosan beads. Ceramics International, 2012, 37: 571–579
4 Jayakumar  R, Menon  D, Manzoor  K, . Biomedical applications of chitin and chitosan based nanomaterials – a short review. Carbohydrate Polymers, 2010, 82(2): 227–232
5 Dong  Y, Feng  S S. Poly (D,L-lactide-co-glycolide)/MMT nanoparticles for oral delivery of anticancer drugs release system. Applied Clay Science, 2007, 36: 297–301
6 Zheng  J P, Wang  C Z, Wang  X X, . Preparation of biomimetic three-dimensional gelatin/montmorillonite-chitosan scaffold for tissue engineering. Reactive & Functional Polymers, 2007, 67(9): 780–788
7 Gieseking  J E. The mechanism of cation exchange in the montmorillonite-beidellite-nontronite type of clay minerals. Soil Science, 1939, 47(1): 1–14
8 Kokubo  T, Takadama  H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 2006, 27(15): 2907–2915
9 Olad  A, Azhar  F F. The synergetic effect of bioactive ceramic and nanoclay on the properties of chitosan-gelatin/nanohydroxypatite-montmorillonite scaffold for bone tissue engineering. Ceramics International, 2014, 40(7): 10061–10072
10 Zhang  Z, Liao  L, Xia  Z. Ultrasound-assisted preparation and characterization of anionic surfacant modified montmorillonites. Applied Clay Science, 2010, 50(4): 576–581
11 Sahoo  R, Sahoo  S, Nayak  P L. Synthesis and characterization of polycaprolactone-gelatin nanocomposites for control release antic-ancer drug paclitaxel. European Journal of Scientific Research, 2011, 48: 527–537
12 Bin Ahmad  M, Lim  J J, Shameli  K, . Synthesis of silver nanoparticles in chitosan, gelatin and chitosan/gelatin bionanocomposites by a chemical reducing agent and their characterization. Molecules, 2011, 16(12): 7237–7248
13 Zhuang  G, Zhang  Z, Guo  J, . A new ball milling method to produce organo-montmorillonite from anionic and nonionic surfactants. Applied Clay Science, 2015, 104: 18–26
14 Poon  L, Wilson  L D, Headley  J V. Chitosan-glutaraldehyde copolymers and their sorption properties. Carbohydrate Polymers, 2014, 109: 92–101
15 Freyman  T M, Yannas  I V, Gibson  L J. Cellular materials as porous scaffolds for tissue engineering. Progress in Materials Science, 2001, 46(3–4): 273–282
16 Lee  J H, Park  T G, Park  H S, . Thermal and mechanical characteristics of poly(L-lactic acid) nanocomposite scaffold. Biomaterials, 2003, 24(16): 2773–2778
17 Marques  A P, Reis  R L. Hydroxyapatite reinforcement of different starch-based polymers affects osteoblast-like cells adhesion/spreading and proliferation. Materials Science and Engineering C, 2005, 25(2): 215–229
18 Ehrlich  H, Krajewska  B, Hanke  T, . Chitosan membrane as a template for hydroxyapatite crystal growth in a model dual membrane diffusion system. Journal of Membrane Science, 2006, 273(1–2): 124–128
19 Chesnutt  B M, Yuan  Y, Brahmandam  N, . Characterization of biomimetic calcium phosphate on phosphorylated chitosan films. Journal of Biomedical Materials Research Part A, 2007, 82(2): 343–353
[1] Jing LI,Fang-Kui MA,Qi-Feng DANG,Xing-Guo LIANG,Xi-Guang CHEN. Glucose-conjugated chitosan nanoparticles for targeted drug delivery and their specific interaction with tumor cells[J]. Front. Mater. Sci., 2014, 8(4): 363-372.
[2] Hui-Yun ZHOU,Pei-Pei CAO,Jie ZHAO,Zhi-Ying WANG,Jun-Bo LI,Fa-Liang ZHANG. Release behavior and kinetic evaluation of berberine hydrochloride from ethyl cellulose/chitosan microspheres[J]. Front. Mater. Sci., 2014, 8(4): 373-382.
[3] Wei-Fang LIU, Chuan-Zhen KANG, Ming KONG, Yang LI, Jing SU, An YI, Xiao-Jie CHENG, Xi-Guang CHEN. Controlled release behaviors of chitosan/α, β- glycerophosphate thermo-sensitive hydrogels[J]. Front Mater Sci, 2012, 6(3): 250-258.
[4] WANG Zheng-ke, HU Qiao-ling, FEI Ruo-chong, SHEN Jia-cong, KE Jia-han. Chitosan rod reinforced by self-crosslinking through thermal treatment[J]. Front. Mater. Sci., 2008, 2(2): 205-208.
[5] MA Guiping, YANG Dongzhi, ZHOU Yingshan, JIN Yu, NIE Jun. Preparation and characterization of chitosan/poly(vinyl alcohol)/poly(vinyl pyrrolidone) electrospun fibers[J]. Front. Mater. Sci., 2007, 1(4): 432-436.
[6] HU Kai, YANG Xianjin, CAI Yanli, CUI Zhenduo, WEI Qiang. Comparison of physical characteristics and cell culture test of hydroxyapatite/collagen composite coating on NiTi SMA: electrochemical deposition and chemically biomimetic growth[J]. Front. Mater. Sci., 2007, 1(3): 229-236.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed