Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2016, Vol. 10 Issue (1) : 1-7    https://doi.org/10.1007/s11706-016-0321-4
RESEARCH ARTICLE
Flow-directed assembly of non-spherical titania nanoparticles into superhydrophilic thin films
Abhijeet OJHA1,Manish THAKKER2,3,Dinesh O. SHAH3,4,Prachi THAREJA5,*()
1. Department of Biological Engineering, Indian Institute of Technology, Gandhinagar, Ahmedabad 382424, Gujarat, India
2. Department of Instrumentation and Control Engineering, Dharmsinh Desai University, Nadiad 387001, Gujarat, India
3. Shah-Schulman Center for Surface Science and Nanotechnology, Dharmsinh Desai University, Nadiad 387001, Gujarat, India
4. Department of Chemical Engineering and Department of Anesthesiology, University of Florida, Gainesville, FL 32608, USA
5. Department of Chemical Engineering, Indian Institute of Technology, Gandhinagar, Ahmedabad 382424, Gujarat, India
 Download: PDF(2430 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Superhydrophilic thin films of 21 nm sized non-spherical titania nanoparticles are fabricated from a colloidal suspension by fixed blade flow coating without UV illumination. At a blade angle of α = 36° and a gap of d= 300 μm, hierarchically structured films with increasing surface roughness along with microscopic voids are formed depending on the substrate velocity and the titania volume fraction. Increasing the roughness is shown to be concomitant to an increase in the hydrophilicity, eventually leading to superhydrophilicity or water contact angle less than 5°.

Keywords superhydrophilicity      titania      flow coating      thin films     
Corresponding Author(s): Prachi THAREJA   
Online First Date: 22 December 2015    Issue Date: 15 January 2016
 Cite this article:   
Abhijeet OJHA,Manish THAKKER,Dinesh O. SHAH, et al. Flow-directed assembly of non-spherical titania nanoparticles into superhydrophilic thin films[J]. Front. Mater. Sci., 2016, 10(1): 1-7.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-016-0321-4
https://academic.hep.com.cn/foms/EN/Y2016/V10/I1/1
Fig.1  (a) The experimental flow coating set-up for the deposition of thin films on glass substrates. (b) Schematic of the flow coating of titania thin films. The colloidal titania suspension is confined between a blade and the substrate, the angle between substrate and blade is α and the distance is d. (c) XRD patterns of titania particles and films with the titania volume fractions of 0.013 and 0.026 fabricated at the substrate speed of 1200 μm/s.
Fig.2  SEM images of the surface of titania films with varying volume fractions and substrate velocity.
Fig.3  SEM images of titania films with φ = 0.026 at the substrate velocities of (a) 200 μm/s, (b) 800 μm/s and (c) 1200 μm/s. SEM cross-section images of (d)φ = 0.013 and (e)φ = 0.026 at the same substrate velocity of 1200 μm/s.
Fig.4  (a) Water drop shape. (b) CA on titania films with varying volume fraction and substrate velocities. (c) CA of titania films after storing in dark.
Fig.5  Average surface roughness of titania films (φ = 0.026) at the substrate speeds of (a) 200 μm/s, (b) 800 μm/s and (c) 1200 μm/s. Ravg indicates the average value of roughness of the titania film.
Fig.6  (a) Anti-fogging. (b) Beading versus sheeting of water on glass slides with titania thin films indicative of self-cleaning surface.
AFMatomic force microscopy
CAwater contact angle
IRinfrared
SEMscanning electron microscopy
UVultraviolet
XPSX-ray photoelectron spectroscopy
XRDX-ray diffraction
Tab.1  
1 Hoffmann  M R, Martin  S T, Choi  W, . Environmental applications of semiconductor photocatalysis. Chemical Reviews, 1995, 95(1): 69–96
2 Minabe  T, Tryk  D A, Sawunyama  P, . TiO2-mediated photodegradation of liquid and solid organic compounds. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 137(1): 53–62
3 Fujishima  A, Honda  K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37–38
4 Wang  R, Hashimoto  K, Fujishima  A, . Light-induced amphiphilic surfaces. Nature, 1997, 388(6641): 431–432
5 Watanabe  T, Nakajima  A, Wang  R, . Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass. Thin Solid Films, 1999, 351(1–2): 260–263
6 Wang  L Q, Baer  D R, Engelhard  M H, . The adsorption of liquid and vapor water on TiO2(110) surfaces: the role of defects. Surface Science, 1995, 344(3): 237–250
7 Wang  R, Sakai  N, Fujishima  A, . Studies of surface wettability conversion on TiO2 single-crystal surfaces. The Journal of Physical Chemistry B, 1999, 103(12): 2188–2194
8 Nakajima  A, Koizumi  S, Watanabe  T, . Photoinduced amphiphilic surface on polycrystalline anatase TiO2 thin films. Langmuir, 2000, 16(17): 7048–7050
9 Sawunyama  P, Jiang  L, Fujishima  A, . Photodecomposition of a Langmuir-Blodgett film of stearic acid on TiO2 film observed by in situ atomic force microscopy and FT-IR. The Journal of Physical Chemistry B, 1997, 101(51): 11000–11003
10 Miyauchi  M, Kieda  N, Hishita  S, . Reversible wettability control of TiO2 surface by light irradiation. Surface Science, 2002, 511(1–3): 401–407
11 Feng  X, Zhai  J, Jiang  L. The fabrication and switchable superhydrophobicity of TiO2 nanorod films. Angewandte Chemie International Edition, 2005, 44(32): 5115–5118
12 Wenzel  R. Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 1936, 28(8): 988–994
13 Cassie  A, Baxter  S. Wettability of porous surfaces. Transactions of the Faraday Society, 1944, 40: 546–551
14 Bico  J, Thiele  U, Quere  D. Wetting of textured surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 206(1–3): 41–46
15 Bico  J, Tordeux  C, Quere  D. Rough wetting. EPL (Europhysics Letters), 2001, 55(2): 214–220
16 Zorba  V, Chen  X, Mao  S S. Superhydrophilic TiO2 surface without photocatalytic activation. Applied Physics Letters, 2010, 96(9): 093702 (3 pages)
17 Lee  D, Rubner  M F, Cohen  R E. All-nanoparticle thin-film coatings. Nano Letters, 2006, 6(10): 2305–2312
18 Yu  J, Zhao  X, Zhao  Q, . Preparation and characterization of super-hydrophilic porous TiO2 coating films. Materials Chemistry and Physics, 2001, 68(1–3): 253–259
19 Han  J B, Wang  X, Wang  N, . Effect of plasma treatment on hydrophilic properties of TiO2 thin films. Surface and Coatings Technology, 2006, 200(16–17): 4876–4878
20 Sirghi  L, Nakamura  M, Hatanaka  Y, . Atomic force microscopy study of the hydrophilicity of TiO2 thin films obtained by radio frequency magnetron sputtering and plasma enhanced chemical vapor depositions. Langmuir, 2001, 17(26): 8199–8203
21 Weinstein  S J, Ruschak  K J. Coating flows. Annual Review of Fluid Mechanics, 2004, 36(1): 29–53
22 Mittal  M, Niles  R K, Furst  E M. Flow-directed assembly of nanostructured thin films from suspensions of anisotropic titania particles. Nanoscale, 2010, 2(10): 2237–2243
23 Fujishima  A, Rao  T N, Tryk  D A. Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2000, 1(1): 1–21
24 Shirtcliffe  N J, McHale  G, Newton  M I, . Porous materials show superhydrophobic to superhydrophilic switching. Chemical Communications, 2005, (25): 3135–3137
25 Irie  H, Ping  T S, Shibata  T, . Reversible control of wettability of a TiO2 surface by introducing surface roughness. Electrochemical and Solid-State Letters, 2005, 8(9): D23–D25
[1] Jingwei LU, Xiaotao ZHU, Xiao MIAO, Bo WANG, Yuanming SONG, Guina REN, Xiangming LI. An unusual superhydrophilic/superoleophobic sponge for oil--water separation[J]. Front. Mater. Sci., 2020, 14(3): 341-350.
[2] Heling GUO, Xiaolin WANG, Xie LI, Xiulan ZHANG, Xinghuan LIU, Yu DAI, Rongjie WANG, Xuhong GUO, Xin JIA. Sprayable and rapidly bondable phenolic-metal coating for versatile oil/water separation[J]. Front. Mater. Sci., 2019, 13(2): 193-205.
[3] Dongthanh NGUYEN,Wei WANG,Haibo LONG,Hongqiang RU. Facile and controllable preparation of mesoporous TiO2 using poly(ethylene glycol) as structure-directing agent and peroxotitanic acid as precursor[J]. Front. Mater. Sci., 2016, 10(4): 405-412.
[4] Dongthanh NGUYEN,Wei WANG,Haibo LONG,Hongqiang RU. Synthesis, characterization and photoactivity of bi-crystalline mesoporous TiO2[J]. Front. Mater. Sci., 2016, 10(1): 23-30.
[5] Ruiping LIU,Feng REN,Jinlin YANG,Weiming SU,Zhiming SUN,Lei ZHANG,Chang-an WANG. One-step synthesis of hierarchically porous hybrid TiO2 hollow spheres with high photocatalytic activity[J]. Front. Mater. Sci., 2016, 10(1): 15-22.
[6] Yu-quan WANG, Zheng-cao LI, Zheng-jun ZHANG. Preparation of V2O5 thin film and its optical characteristics[J]. Front Mater Sci Chin, 2009, 3(1): 44-47.
[7] LIU Shuxia, HE Junhui. Inorganic replication of human hair and in situ synthesis of gold nanoparticles[J]. Front. Mater. Sci., 2007, 1(3): 263-267.
[8] LIU Hong, PU Zhaohui, XIAO Dingquan, ZHU Jianguo, ZHU Xiaohong. The effect of different electrode structures on the dielectric properties of lanthanum-doped lead titanate ferroelectric thin films[J]. Front. Mater. Sci., 2007, 1(3): 322-325.
[9] LAN Wei, PENG Xingping, LIU Xueqin, HE Zhiwei, WANG Yinyue. Preparation and properties of ZnO thin films deposited by sol-gel technique[J]. Front. Mater. Sci., 2007, 1(1): 88-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed