Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2016, Vol. 10 Issue (1) : 15-22    https://doi.org/10.1007/s11706-016-0323-2
RESEARCH ARTICLE
One-step synthesis of hierarchically porous hybrid TiO2 hollow spheres with high photocatalytic activity
Ruiping LIU1,*(),Feng REN1,Jinlin YANG1,Weiming SU1,Zhiming SUN2,Lei ZHANG3,Chang-an WANG4
1. Department of Materials Science and Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China
2. School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China
3. Department of Mechanical Engineering, PO Box 755905, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
4. School of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China
 Download: PDF(1270 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Hierarchically porous hybrid TiO2 hollow spheres were solvothermally synthesized successfully by using tetrabutyl titanate as titanium precursor and hydrated metal sulfates as soft templates. The as-prepared TiO2 spheres with hierarchically pore structures and high specific surface area and pore volume consisted of highly crystallized anatase TiO2 nanocrystals hybridized with a small amount of metal oxide from the hydrated sulfate. The proposed hydrated-sulfate assisted solvothermal (HAS) synthesis strategy was demonstrated to be widely applicable to various systems. Evaluation of the hybrid TiO2 hollow spheres for the photo-decomposition of methyl orange (MO) under visible-light irradiation revealed that they exhibited excellent photocatalytic activity and durability.

Keywords titania      hybrid composite      hollow spheres      photocatalytic property     
Corresponding Author(s): Ruiping LIU   
Online First Date: 25 December 2015    Issue Date: 15 January 2016
 Cite this article:   
Ruiping LIU,Feng REN,Jinlin YANG, et al. One-step synthesis of hierarchically porous hybrid TiO2 hollow spheres with high photocatalytic activity[J]. Front. Mater. Sci., 2016, 10(1): 15-22.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-016-0323-2
https://academic.hep.com.cn/foms/EN/Y2016/V10/I1/15
Fig.1  A schematic illustration of the formation mechanism of TiO2 hollow spheres.
Fig.2  (a)(b)(c) SEM and (d) TEM images of TiO2 hollow spheres prepared by using ZnSO4·7H2O as templates.
Fig.3  XRD pattern and (b) N2 adsorption–desorption isotherms (inset: pore size distributions) of the as-prepared TiO2 hollow spheres.
Fig.4  XPS spectrum of TiO2 hollow spheres (inset: the high-resolution XPS spectra of Zn2p).
Fig.5  SEM images of TiO2 hollow spheres prepared with the stirring speed of (a) 200 r/min, (b) 300 r/min, (c) 400 r/min, (d) 500 r/min, (e) 600 r/min and (f) 800 r/min.
Fig.6  SEM and TEM (the inset) images of TiO2 hollow spheres prepared by using (a) FeSO4•7H2O, (b) MgSO4•7H2O and (c) CoSO4•7H2O as templates.
Fig.7  XRD patterns of TiO2 hollow spheres prepared by using FeSO4•7H2O, MgSO4•7H2O and CoSO4•7H2O as templates.
Fig.8  XPS spectra of (a) TiO2/Fe2O3, (b) TiO2/MgO and (c) TiO2/Co2O3 spheres.
Fig.9  UV-vis absorption spectra of the hybrid TiO2 hollow spheres.
Fig.10  Photocatalytic degradation of MO solution over different photocatalysts under visible-light irradiation (λ>420 nm).
<?PubTbl row rht="0.44in"?>
CBconduction band
DIdeionization
HAShydrated-sulfate assisted solvothermal
MOmethyl orange
SEMscanning electron microscopy
TBTtetrabutyl titanate
TEMtransmission electron microscopy
UVultraviolet
VBvalence band
XPSX-ray photoelectron spectroscopy
XRDX-ray diffraction
Tab.1  
1 Joo  J B, Zhang  Q, Lee  I, . Mesoporous anatase titania hollow nanostructures though silica-protected calcinations. Advanced Functional Materials, 2012, 22(1): 166–174
2 Chen  X, Mao  S S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chemical Reviews, 2007, 107(7): 2891–2959
3 Asahi  R, Morikawa  T, Ohwaki  T, . Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293(5528): 269–271
4 Liu  G, Wang  L, Yang  H G, . Titania-based photocatalysts − crystal growth, doping and heterostructuring. Journal of Materials Chemistry, 2010, 20(5): 831–843
5 Klauson  D, Portjanskaya  E, Budarnaja  O, . The synthesis of sulphur and boron-containing titania photocatalysts and the evaluation of their photocatalytic activity. Catalysis Communications, 2010, 11(8): 715–720
6 Lü  X, Huang  F, Mou  X, . A general preparation strategy for hybrid TiO2 hierarchical spheres and their enhanced solar energy utilization efficiency. Advanced Materials, 2010, 22(33): 3719–3722
7 Wang  C, Ao  Y, Wang  P, . Preparation, characterization, photocatalytic properties of titania hollow sphere doped with cerium. Journal of Hazardous Materials, 2010, 178(1–3): 517–521
8 Yu  J, Zhang  L, Cheng  B, . Hydrothermal preparation and photocatalytic activity of hierarchically sponge-like macro-/mesoporous titania. Journal of Physical Chemistry C, 2007, 111(28): 10582–10589
9 Syoufian  A, Satriya  O H, Nakashima  K. Photocatalytic activity of titania hollow spheres: Photodecomposition of methylene blue as a target molecule. Catalysis Communications, 2007, 8(5): 755–759
10 Liu  Y. Hydrothermal synthesis of TiO2–RGO composites and their improved photocatalytic activity in visible light. RSC Advances, 2014, 4(68): 36040–36045
11 Yu  J, Liu  S, Yu  H. Microstructures and photoactivity of mesoporous anatase hollow microspheres fabricated by fluoride-mediated self-transformation. Journal of Catalysis, 2007, 249(1): 59–66
12 Liu  C, Zhang  D, Sun  Y. Synthesis of hollow anatase spheres with enhanced optical performance. CrystEngComm, 2014, 16(36): 8421–8428
13 Zhao  D, Peng  T Y, Xiao  J R, . Preparation, characterization and photocatalytic performance of Nd3+-doped titania nanoparticles with mesostructured. Materials Letters, 2007, 61(1): 105–110
14 Parida  K M, Sahu  N. Visible light induced photocatalytic activity of rare earth titania nanocomposites. Journal of Molecular Catalysis A: Chemical, 2008, 287(1–2): 151–158
15 Wang  C, Ao  Y H, Wang  P F, . Preparation, characterization and photocatalytic activity of the neodymium-doped TiO2 hollow spheres. Applied Surface Science, 2010, 257(1): 227–231
16 Zhao  D, Peng  T Y, Liu  M, . Fabrication, characterization and photocatalytic activity of Gd3+-doped titania nanoparticles with mesostructured. Microporous and Mesoporous Materials, 2008, 114(1–3): 166–174
17 Peng  T Y, Zhao  D, Song  H B, . Preparation of lanthana-doped titania nanoparticles with anatase mesoporous walls and high photocatalytic activity. Journal of Molecular Catalysis A: Chemical, 2005, 238(1–2): 119–126
18 Zhang  J L, Wu  Y M, Xing  M Y, . Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides. Energy & Environmental Science, 2010, 3(6): 715–726
19 Shi  J W, Chen  J W, Cui  H J, . One template approach to synthesize C-doped titania hollow spheres with high visible-light photocatalytic activity. Chemical Engineering Journal, 2012, 195–196: 226–232
20 Wu  L, Yu  J C, Fu  X. Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation. Journal of Molecular Catalysis A: Chemical, 2006, 244(1–2): 25–32
21 Zhang  Y J, Yan  W, Wu  Y P, . Synthesis of TiO2 nanotubes coupled with CdS nanoparticles and production of hydrogen by photocatalytic water decomposition. Materials Letters, 2008, 62(23): 3846–3848
22 Bhatkhande  D S, Pangarkar  V G, Beenackers  A A. Photocatalytic degradation for environmental applications − a review. Journal of Chemical Technology and Biotechnology, 2002, 77(1): 102–116
23 Reddy  K M, Manorama  S V, Reddy  A R. Bandgap studies on anatase titanium dioxide nanoparticles. Materials Chemistry and Physics, 2003, 78(1): 239–245
24 Stengl  V, Bakardjieva  S, Murafa  N, . Visible-light photocatalytic activity of TiO2/ZnS nanocomposites prepared by homogeneous hydrolysis. Microporous and Mesoporous Materials, 2008, 110(2–3): 370–378
25 Bessekhouad  Y, Robert  D, Weber  J V. Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions. Catalysis Today, 2005, 101(3–4): 315–321
26 Bandara  J, Hadapangoda  C C, Jayasekera  W G. TiO2/MgO composite photocatalyst: the role of MgO in photoinduced charge carrier separation. Applied Catalysis B: Environmental, 2004, 50(2): 83–88
[1] Cuicui HU, Huanhuan ZHANG, Yanjun XING. Alkylamine-mediated synthesis and photocatalytic properties of ZnO[J]. Front. Mater. Sci., 2019, 13(1): 33-42.
[2] Dongthanh NGUYEN,Wei WANG,Haibo LONG,Hongqiang RU. Facile and controllable preparation of mesoporous TiO2 using poly(ethylene glycol) as structure-directing agent and peroxotitanic acid as precursor[J]. Front. Mater. Sci., 2016, 10(4): 405-412.
[3] Dongthanh NGUYEN,Wei WANG,Haibo LONG,Hongqiang RU. Synthesis, characterization and photoactivity of bi-crystalline mesoporous TiO2[J]. Front. Mater. Sci., 2016, 10(1): 23-30.
[4] Abhijeet OJHA,Manish THAKKER,Dinesh O. SHAH,Prachi THAREJA. Flow-directed assembly of non-spherical titania nanoparticles into superhydrophilic thin films[J]. Front. Mater. Sci., 2016, 10(1): 1-7.
[5] LIU Shuxia, HE Junhui. Inorganic replication of human hair and in situ synthesis of gold nanoparticles[J]. Front. Mater. Sci., 2007, 1(3): 263-267.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed