Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2016, Vol. 10 Issue (3) : 328-333    https://doi.org/10.1007/s11706-016-0350-z
COMMUNICATION
Up-converted ultraviolet luminescence of Er3+:BaGd2ZnO5 phosphors for healthy illumination
Ya ZHANG1,Qingzhi CUI1,Zhanyong WANG1,Gan LIU2,Tian TIAN1,*(),Jiayue XU1,*()
1. Institute of Crystal Growth, School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
2. Nanjing SKY Traffic Safety Technology Stock Co. Ltd., Nanjing 210014, China
 Download: PDF(225 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Moderate level of exposure to the solar irradiation containing UV component is essential for health care. To incorporate the UV-emitting phosphors into the commercial YAG-based white light-emitting diode introduces the possibilities of healthy illumination to individuals’ daily lives. 1 mol.% Er3+-doped BaGd2ZnO5 (BGZ) particles were synthesized via sol–gel method and efficient up-converted luminescence peaked at 380 nm was detected under 480 nm excitation. The mixed phosphors with varied mass ratio of Er3+:BGZ and Ce3+:YAG particles were encapsulated to form LEDs. The study of the LEDs indicated that the introduction of BGZ component favored the enhancement of color-rendering index and the neutralization of the white light emitting. The WLED with the BGZ/YAG ratio of 8:2 was recommendable for its excellent overall white light luminous performances and UV intensity of 84.55 mW/cm2. The UV illumination dose of the WLEDs with mixed YAG and BGZ was controllable by adjusting the ratio, the illumination distance and the illumination time. Er3+:BGZ phosphors are promising UV-emitting phosphors for healthy indoor illumination.

Keywords Er3+:BaGd2ZnO5      up-converted ultraviolet      LED      healthy illumination     
Corresponding Author(s): Tian TIAN,Jiayue XU   
Issue Date: 08 August 2016
 Cite this article:   
Ya ZHANG,Qingzhi CUI,Zhanyong WANG, et al. Up-converted ultraviolet luminescence of Er3+:BaGd2ZnO5 phosphors for healthy illumination[J]. Front. Mater. Sci., 2016, 10(3): 328-333.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-016-0350-z
https://academic.hep.com.cn/foms/EN/Y2016/V10/I3/328
Fig.1  As-synthesized Er3+:BGZ powders: (a)(b)(c) SEM images with different magnifications; (d) XRD patterns of the typical sample and the standard data.
Fig.2  (a) UC and (b) DC luminescence spectra of Er3+:BGZ phosphors.
Fig.3  Schematic energy level diagram of Er3+ in BGZ exhibiting the possible mechanism of UC and DC luminescence of Er3+.
Fig.4  EL spectra from LED packages encapsulated with phosphors of varied composition. Samples a, b, c, d and e are mixtures with the YAG/BGZ mass ratios of 10:0, 9:1, 8:2, 7:3 and 0:10, respectively.
Fig.5  CIE coordinates of the varied LEDs.
Sample Composition (YAG/BGZ) Φ /lm Η /(lm·W−1) Tc /K Ra UV intensity /(mW·cm−2)
a 10:0 7.635 84.44 5219 68.0 0
b 9:1 6.546 72.28 6180 69.8 46.57
c 8:2 6.618 72.89 5977 71.1 84.55
d 7:3 6.040 65.66 6732 73.0 99.23
e 0:10 0.637 6.845 100 000 −55.8 283
Tab.1  The performance of the as-produced LEDs measured with the integrating sphere method
Fig.6  Pictures of lightened LED samples with the YAG/BGZ mass ratios of (a) 10:0, (b) 9:1, (c) 8:2, (d) 7:3 and (e) 0:10.
1 Zhou Q, Zhou Y, Liu Y, . A new red phosphor BaGeF6:Mn4+: hydrothermal synthesis, photo-luminescence properties, and its application in warm white LED devices. Journal of Materials Chemistry C, 2015, 3(13): 3055–3059
https://doi.org/10.1039/C4TC02956A
2 Lv L, Jiang X, Huang S, . The formation mechanism, improved photoluminescence and LED applications of red phosphor K2SiF6:Mn4+. Journal of Materials Chemistry C, 2014, 2(20): 3879–3884
https://doi.org/10.1039/c4tc00087k
3 Huang C H, Chen T M, Cheng B M. Luminescence investigation on ultraviolet-emitting rare-earth-doped phosphors using synchrotron radiation. Inorganic Chemistry, 2011, 50(14): 6552–6556
https://doi.org/10.1021/ic2001877 pmid: 21678915
4 Thakare D S, Omanwar S K, Muthal P L, . UV-emitting phosphors: synthesis, photoluminescence and applications. physica status solidi (a), 2004, 201(3): 574–581
https://doi.org/10.1002/pssa.200306720
5 Yang S G. Development of new type ultraviolet tube and its application to the health. China Illuminating Engineering Journal, 2003, 14(2): 10–16 (in Chinese)
6 Li X, Wang R, Zhang F, . Nd3+ sensitized up/down converting dual-mode nanomaterials for efficient in-vitro and in-vivo bioimaging excited at 800 nm. Scientific Reports, 2013, 3: 3536
pmid: 24346622
7 Zu N, Yang H, Dai Z. Different processes responsible for blue pumped, ultraviolet and violet luminescence in high-concentrated Er3+:YAG and low-concentrated Er3+:YAP crystals. Physica B: Condensed Matter, 2008, 403(1): 174–177
https://doi.org/10.1016/j.physb.2007.08.097
8 Xie J, Mei L, Liao L, . Synthesis and up-conversion luminescence properties of Ho3+, Yb3+ co-doped BaLa2ZnO5. Journal of Physics and Chemistry of Solids, 2015, 83: 152–156
https://doi.org/10.1016/j.jpcs.2015.04.006
9 Tian B N, Chen B J, Tian Y, . Concentration and temperature quenching mechanisms of Dy3+ luminescence in BaGd2ZnO5 phosphors. Journal of Physics and Chemistry of Solids, 2012, 73(11): 1314–1319
https://doi.org/10.1016/j.jpcs.2012.06.016
10 Liang C H, Chang Y C, Chang Y S. Synthesis and photoluminescence characteristics of color-tunable BaY2ZnO5:Eu3+ phosphors. Applied Physics Letters, 2008, 93(21): 211902
https://doi.org/10.1063/1.2998299
11 Guo C, Ding X, Xu Y. Luminescent properties of Eu3+-doped BaLn2ZnO5 (Ln= La, Gd, and Y) phosphors by the sol‒gel method. Journal of the American Ceramic Society, 2008, 93: 1708–1713
12 Li L, Guo C, Jiao H, . Green up-conversion luminescence in Yb3+‒Pr3+ co-doped BaRE2ZnO5 (RE= Y, Gd). Journal of Rare Earths, 2013, 31(12): 1137–1140
https://doi.org/10.1016/S1002-0721(12)60417-7
13 Etchart I, Hernández I, Huignard A, . Oxide phosphors for light upconversion; Yb3+ and Tm3+ co-doped Y2BaZnO5. Journal of Applied Physics, 2011, 109(6): 063104
https://doi.org/10.1063/1.3549634
14 Yang Y, Liu L, Cai S, . Up-conversion luminescence and near-infrared quantum cutting in Dy3+, Yb3+ co-doped BaGd2ZnO5 nanocrystal. Journal of Luminescence, 2014, 146: 284–287
https://doi.org/10.1016/j.jlumin.2013.09.069
15 Tamrakar R K, Bisen D P, Brahme N, . Structural and luminescence behavior of Gd2O3:Er3+ phosphor synthesized by solid state reaction method. Optik- International Journal for Light and Electron Optics, 2015, 126(20): 2654‒2658
16 Yang H G, Wen D Z, Zu N N. UV and visible upconversion luminescence in Er3+:YAG under red laser excitation. Chinese Physics B, 2007, 16(6): 1650–1655
https://doi.org/10.1088/1009-1963/16/6/027
17 Rastello M L, Miraldi E, Pisoni P. Luminous-flux measurements by an absolute integrating sphere. Applied Optics, 1996, 35(22): 4385–4391
https://doi.org/10.1364/AO.35.004385 pmid: 21102851
18 Liu M Q, Zhou X L, Li W Y, . Study on methodology of LED’s luminous flux measurement with integrating sphere. Journal of Physics D: Applied Physics, 2008, 41(14): 144012
https://doi.org/10.1088/0022-3727/41/14/144012
[1] Baolin ZHAO, Mikhail FEOFANOV, Dominik LUNGERICH, Hyoungwon PARK, Tobias REJEK, Judith WITTMANN, Marco SARCLETTI, Konstantin AMSHAROV, Marcus HALIK. Non-substituted fused bis-tetracene based thin-film transistor with self-assembled monolayer hybrid dielectrics[J]. Front. Mater. Sci., 2020, 14(3): 314-322.
[2] Cuicui HU, Huanhuan ZHANG, Yanjun XING. Alkylamine-mediated synthesis and photocatalytic properties of ZnO[J]. Front. Mater. Sci., 2019, 13(1): 33-42.
[3] Somdutta SINGHA, Swapankumar GHOSH. Spectroscopic investigation confirms retaining the pristine nature of single-walled carbon nanotubes on dissolution in aniline[J]. Front. Mater. Sci., 2017, 11(3): 276-283.
[4] Javier Esteban Enríquez MONTENEGRO and Dinesh Pratap SINGH. Effective parameter study for the facile and controlled growth of silver molybdate nano/micro rods[J]. Front. Mater. Sci., 2016, 10(4): 375-384.
[5] Ting-Ting GAO,Ming KONG,Xiao-Jie CHENG,Gui-Xue XIA,Yuan-Yuan GAO,Xi-Guang CHEN,Dong Su CHA,Hyun Jin PARK. A thermosensitive chitosan-based hydrogel for controlled release of insulin[J]. Front. Mater. Sci., 2014, 8(2): 142-149.
[6] Chong WANG,Min WANG. Electrospun multifunctional tissue engineering scaffolds[J]. Front. Mater. Sci., 2014, 8(1): 3-19.
[7] Wei-Fang LIU, Chuan-Zhen KANG, Ming KONG, Yang LI, Jing SU, An YI, Xiao-Jie CHENG, Xi-Guang CHEN. Controlled release behaviors of chitosan/α, β- glycerophosphate thermo-sensitive hydrogels[J]. Front Mater Sci, 2012, 6(3): 250-258.
[8] Jin WANG, Pei-Jing WANG, Peng GAO, Lan JIANG, Shuo LI, Zeng-Guo FENG. Distinguishing channel-type crystal structure from dispersed structure in β-cyclodextrin based polyrotaxanes via FTIR spectroscopy[J]. Front Mater Sci, 2011, 5(3): 329-334.
[9] Kui-Lin DENG, Yu-Bo GOU, Li-Rong DONG, Qian LI, Li-Bin BAI, Ting GAO, Chun-Yuan HUANG, Shu-Liang WANG. Drug release behaviors of a pH/temperature sensitive core-shelled bead with alginate and poly(N-acryloyl glycinates)[J]. Front Mater Sci Chin, 2010, 4(4): 353-358.
[10] Juan GU, Bo YUE, Guang-Fu YIN, Xiao-Ming LIAO, Zhong-Bing HUANG, Ya-Dong YAO, Yun-Qing KANG, . A novel blue emitting phosphor NaBa 0.98 Eu 0.02 PO 4 and the improvement of its luminescence properties[J]. Front. Mater. Sci., 2010, 4(1): 90-94.
[11] Yang LIU, Yu-peng LI, Yin-hu HAO, Ming-kai LEI, . Adhesion of PE modified by capacitively coupled radio frequency plasma-induced graft polymerization of glycidyl methacrylate[J]. Front. Mater. Sci., 2009, 3(4): 380-385.
[12] Liang-bao YANG, Xiu-fang WANG, An-jian XIE, Gang HU, Yu-hua SHEN. Advances in self-assembled ultrathin polyoxomolybdates multilayers[J]. Front Mater Sci Chin, 2009, 3(1): 1-8.
[13] FANG Zhengping, WANG Jianguo, GU Aijuan, TONG Lifang. Curing behavior and kinetic analysis of epoxy resin/multi-walled carbon nanotubes composites[J]. Front. Mater. Sci., 2007, 1(4): 415-422.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed