Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2016, Vol. 10 Issue (4) : 413-421    https://doi.org/10.1007/s11706-016-0355-7
RESEARCH ARTICLE
Electrical properties and thermal sensitivity of Ti/Y modified CuO-based ceramic thermistors
Bao YANG1,Hong ZHANG1,2,Jia GUO1,Ya LIU1,Zhicheng LI1,2()
1. School of Materials Science and Engineering, Central South University, Changsha 410083, China
2. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
 Download: PDF(431 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The Ti/Y modified CuO-based negative temperature coefficient (NTC) thermistors, Cu0.988−2yY0.008TiyO (TYCO; y= 0.01, 0.015, 0.03, 0.05 and 0.07), were synthesized through a wet-chemical method followed by a traditional ceramic sintering technology. The related phase component and electrical properties were investigated. XRD results show that the TYCO ceramics have a monoclinic structure as that of CuO crystal. The TYCO ceramics can be obtained at the sintering temperature 970°C–990°C, and display the typical NTC characteristic. The NTC thermal-sensitive constants of TYCO thermistors can be adjusted from 1112 to 3700 K by changing the amount of Ti in the TYCO ceramics. The analysis of complex impedance spectra revealed that both the bulk effect and grain boundary effect contribute to the electrical behavior and the NTC effect. Both the band conduction and electron-hopping models are proposed for the conduction mechanisms in the TYCO thermistors.

Keywords CuO      TiO2 substitution      electrical property      negative temperature coefficient      conduction mechanism     
Corresponding Author(s): Zhicheng LI   
Online First Date: 20 September 2016    Issue Date: 24 November 2016
 Cite this article:   
Bao YANG,Hong ZHANG,Jia GUO, et al. Electrical properties and thermal sensitivity of Ti/Y modified CuO-based ceramic thermistors[J]. Front. Mater. Sci., 2016, 10(4): 413-421.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-016-0355-7
https://academic.hep.com.cn/foms/EN/Y2016/V10/I4/413
Fig.1  Phase and microstructure of the as-sintered TYCO ceramics: (a) XRD patterns of CuO, Cu0.988Y0.008O (CYO), Cu0.988−2yY0.008TiyO for y = 0.03 (0.03Ti) and y = 0.07 (0.07Ti); (b) SEM image of the as-sintered Cu0.988−2yY0.008TiyO (y = 0.05) ceramic.
Fig.2  Electrical properties of TYCO ceramics with various Ti contents: (a) resistivity?temperature plots comparing with the ones of pure CuO and YCO; (b) TiO2-concentration dependence of ρ25 and B25/85.
Fig.3  Nyquist plots of Cu0.988−2yY0.008TiyO (y = 0.07) ceramic recorded at various temperatures: (a) from 60°C to 110°C; (b) from 130°C to 200°C (the inset equivalent circuit used to fit the plots).
Temperature /°C Rgb /kΩ Cgb /nF Rg /kΩ Cg /pF
60 66.55 0.178 295.6 17.51
85 37.98 0.727 113 5.85
95 16.15 0.105 90.59 11.64
110 12.25 2.2 59.64 2.62
130 6.324 5.3 37.22 2.695
140 1.824 0.852 25.37 10.33
170 1.362 23.89 12.1 5.985
200 0.442 46.55 5.557 7.029
Tab.1  The values of resistance and capacitance fitted by an equivalent circuit for a TYCO ceramic (y = 0.07) at various temperatures
Fig.4  Variation of real part impedance (Z′) with frequency of Cu0.988−2yY0.008TiyO (y = 0.07) ceramic at different temperatures: (a) from 60°C to 120°C; (b) from 130°C to 235°C.
Fig.5  Frequency dependence of imaginary part impedance (Z″) of Cu0.988−2yY0.008TiyO (y = 0.07) ceramic at different temperatures: (a) from 60°C to 120°C; (b) from 130°C to 280°C.
Fig.6  Comparison of some physical properties of a Cu0.988−2yY0.008TiyO (y = 0.07) ceramic at different temperatures: (a) relaxation time and resistivity; (b) resistances of grain effect and grain boundary effect.
Fig.7  Characteristic of electric modulus of a Cu0.988−2yY0.008TiyO (y = 0.07) ceramic at different temperatures: (a) plots of real part modulus to imaginary one; (b) frequency dependence of real part modulus (M'), and the inset is frequency dependence of imaginary part modulus (M").
Fig.8  Double-logarithmic plots (lgσ′(ω) versus lgω) of a Cu0.988−2yY0.008TiyO (y = 0.07) ceramic at various temperatures.
1 Feteira A. Negative temperature coefficient resistance (NTCR) ceramic thermistors: an industrial perspective. Journal of the American Ceramic Society, 2009, 92(5): 967–983
https://doi.org/10.1111/j.1551-2916.2009.02990.x
2 Muralidharan M N, Rohini P R, Sunny E K, . Effect of Cu and Fe addition on electrical properties of Ni–Mn–Co–O NTC thermistor compositions. Ceramics International, 2012, 38(8): 6481–6486
https://doi.org/10.1016/j.ceramint.2012.05.025
3 Golestani-Fard F, Azimi S, Mackenzie K J D. Oxygen evolution during the formation and sintering of nickel–manganese oxide spinels for thermistor applications. Journal of Materials Science, 1987, 22(8): 2847–2851
https://doi.org/10.1007/BF01086481
4 Feltz A, Pölzl W. Spinel forming ceramics of the system FexNiyMn3−x−yO4 for high temperature NTC thermistor applications. Journal of the European Ceramic Society, 2000, 20(14): 2353–2366
https://doi.org/10.1016/S0955-2219(00)00140-0
5 Fang D L, Chen C S, Winnubst A J A. Preparation and electrical properties of FexCu0.10Ni0.66Mn2.24−xO4 (0≤x≤0.90) NTC ceramics. Journal of Alloys and Compounds, 2008, 454(1): 286–291
https://doi.org/10.1016/j.jallcom.2006.12.059
6 Park K, Han I H. Effect of Al2O3 addition on the microstructure and electrical properties of (Mn0.37Ni0.3Co0.33−xAlx)O4 (0≤x≤0.03) NTC thermistors. Materials Science and Engineering B, 2005, 119(1): 55–60
https://doi.org/10.1016/j.mseb.2005.01.018
7 Elilarassi R, Chandrasekaran G. Structural, optical and electron paramagnetic resonance studies on Cu-doped ZnO nanoparticles synthesized using a novel auto-combustion method. Frontiers of Materials Science, 2013, 7(2): 196–201
https://doi.org/10.1007/s11706-013-0198-4
8 Macklen E D. Electrical conductivity and cation distribution in nickel manganite. Journal of Physics and Chemistry of Solids, 1986, 47(11): 1073–1079
https://doi.org/10.1016/0022-3697(86)90074-0
9 Jung J, Töpfer J, Mürbe J, . Microstructure and phase development in NiMn2O4 spinel ceramics during isothermal sintering. Journal of the European Ceramic Society, 1990, 6(6): 351–359
https://doi.org/10.1016/0955-2219(90)90002-W
10 Fau P, Bonino J P, Demai J J, . Thin films of nickel manganese oxide for NTC thermistor applications. Applied Surface Science, 1993, 65: 319–324
https://doi.org/10.1016/0169-4332(93)90679-6
11 Basu A, Brinkman A W, Schmidt R. Effect of oxygen partial pressure on the NTCR characteristics of sputtered NixMn3−xO4+δ thin films. Journal of the European Ceramic Society, 2004, 24(6): 1247–1250
https://doi.org/10.1016/S0955-2219(03)00380-7
12 Xue D, Zhang H, Li Y, . Electrical properties of hexagonal BaTi1−xFexO3−δ (x = 0.1, 0.2, 0.3) ceramics with NTC effect. Journal of Materials Science: Materials in Electronics, 2012, 23(7): 1306–1312
https://doi.org/10.1007/s10854-011-0589-1
13 Nobre M A L, Lanfredi S. Negative temperature coefficient thermistor based on Bi3Zn2Sb3O14 ceramic: an oxide semiconductor at high temperature. Applied Physics Letters, 2003, 82(14): 2284–2286
https://doi.org/10.1063/1.1566458
14 Wang J, Zhang H, Xue D, . Electrical properties of hexagonal BaTi0.8Co0.2O3−δ ceramic with NTC effect. Journal of Physics D: Applied Physics, 2009, 42(23): 235103–235109
https://doi.org/10.1088/0022-3727/42/23/235103
15 Ouyang P, Zhang H, Xue D, . NTC characteristic of SnSb0.05O2–BaTi0.8Fe0.2O3 composite materials. Journal of Materials Science: Materials in Electronics, 2013, 24(10): 3932–3939
https://doi.org/10.1007/s10854-013-1342-8
16 Upadhyay S, Parkash O, Kumar D. Synthesis, structure and electrical behaviour of lanthanum-doped barium stannate. Journal of Physics D: Applied Physics, 2004, 37(10): 1483–1491
https://doi.org/10.1088/0022-3727/37/10/011
18 Zhang J, Zhang H, Yang B, . Temperature sensitivity of Fe-substituted SnO2-based ceramics as negative temperature coefficient thermistors. Journal of Materials Science: Materials in Electronics, 2016, 27(5): 4935–4942
https://doi.org/10.1007/s10854-016-4378-8
19 Ouyang P, Zhang H, Zhang Y, . Zr-substituted SnO2-based NTC thermistors with wide application temperature range and high property stability. Journal of Materials Science: Materials in Electronics, 2015, 26(8): 6163–6169
https://doi.org/10.1007/s10854-015-3197-7
20 Zhang Y, Wu Y, Zhang H, . Characterization of negative temperature coefficient of resistivity in (Sn1−xTix)0.95Sb0.05O2 (x≤0.1) ceramics. Journal of Materials Science: Materials in Electronics, 2014, 25(12): 5552–5559
https://doi.org/10.1007/s10854-014-2343-y
21 Ghijsen J, Tjeng L H, van Elp J, . Electronic structure of Cu2O and CuO. Physical Review B: Condensed Matter and Materials Physics, 1988, 38(16): 11322–11330
https://doi.org/10.1103/PhysRevB.38.11322
22 Dubal D P, Gund G S, Holze R, . Mild chemical strategy to grow micro-roses and micro-woolen like arranged CuO nanosheets for high performance supercapacitors. Journal of Power Sources, 2013, 242: 687–698
https://doi.org/10.1016/j.jpowsour.2013.05.013
23 Chen W, Zhang H, Ma Z, . High electrochemical performance and lithiation–delithiation phase evolution in CuO thin films for Li-ion storage. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(27): 14202–14209
https://doi.org/10.1039/C5TA02524A
24 Sumikura S, Mori S, Shimizu S, . Photoelectrochemical characteristics of cells with dyed and undyed nanoporous p-type semiconductor CuO electrodes. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 194(2–3): 143–147
https://doi.org/10.1016/j.jphotochem.2007.07.035
25 Anandan S, Wen X, Yang S. Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells. Materials Chemistry and Physics, 2005, 93(1): 35–40
https://doi.org/10.1016/j.matchemphys.2005.02.002
26 He H, Bourges P, Sidis Y, . Magnetic resonant mode in the single-layer high-temperature superconductor Tl2Ba2Cu6+δ. Science, 2002, 295(5557): 1045–1047
https://doi.org/10.1126/science.1067877
27 Ramirez-Ortiz J, Ogura T, Medina-Valtierra J, . A catalytic application of Cu2O and CuO films deposited over fiberglass. Applied Surface Science, 2001, 174(3–4): 177–184
28 Patil S J, Patil A V, Dighavkar C G, . Semiconductor metal oxide compounds based gas sensors: A literature review. Frontiers of Materials Science, 2015, 9(1): 14–37
https://doi.org/10.1007/s11706-015-0279-7
29 Yang B, Zhang H, Zhang J, . Electrical properties and temperature sensitivity of B-substituted CuO-based ceramics for negative temperature coefficient thermistors. Journal of Materials Science: Materials in Electronics, 2015, 26(12): 10151–10158
https://doi.org/10.1007/s10854-015-3701-0
30 Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A: Crystal Physics, 1976, 32(5): 751–767
https://doi.org/10.1107/S0567739476001551
31 Prasad N V, Prasad G, Bhimasankaram T, . Synthesis and electrical properties of SmBi5Fe2Ti3O18. Modern Physics Letters B, 1998, 12(10): 371–381
https://doi.org/10.1142/S0217984998000469
32 Martínez R, Kumar A, Palai R, . Impedance spectroscopy analysis of Ba0.7Sr03TiO3/La0.7Sr0.3MnO3 heterostructure. Journal of Physics D: Applied Physics, 2011, 44(10): 105302–105310
https://doi.org/10.1088/0022-3727/44/10/105302
33 Azam A, Ahmed A S, Ansari M S, . Study of electrical properties of nickel doped SnO2 ceramic nanoparticles. Journal of Alloys and Compounds, 2010, 506(1): 237–242
https://doi.org/10.1016/j.jallcom.2010.06.184
34 Behera B, Nayak P, Choudhary R N P. Structural and impedance properties of KBa2V5O15 ceramics. Materials Research Bulletin, 2008, 43(2): 401–410
https://doi.org/10.1016/j.materresbull.2007.02.042
35 Jonscher A K. The “universal” dielectric response. Nature, 1977, 267(5613): 673–679
https://doi.org/10.1038/267673a0
[1] Fang LIU, Xiangping JIANG, Chao CHEN, Xin NIE, Xiaokun HUANG, Yunjing CHEN, Hao HU, Chunyang SU. Structural, electrical and photoluminescence properties of Er3+-doped SrBi4Ti4O15--Bi4Ti3O12 inter-growth ceramics[J]. Front. Mater. Sci., 2019, 13(1): 99-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed