Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2017, Vol. 11 Issue (1) : 51-58    https://doi.org/10.1007/s11706-017-0367-y
RESEARCH ARTICLE
Photoluminescence and electrical properties of Er3+-doped Na0.5Bi4.5Ti4O15--Bi4Ti3O12 inter-growth ferroelectrics ceramics
Yalin JIANG,Xiangping JIANG(),Chao CHEN,Yunjing CHEN,Xingan JIANG,Na TU
Jiangxi Key Laboratory of Advanced Ceramic Materials, Department of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333001, China
 Download: PDF(379 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Upconversion (UC) and electrical properties of Na0.5Bi8.5−xErxTi7O27 (NBT–BIT–xEr, 0.00≤x≤0.25) ceramics were studied. Structural analysis revealed that a single inter-growth structured phase exists in all samples and the Er3+ ion substituting for Bi3+ at the A-site increases the orthorhombic distortion. Under the 980 nm laser excitation, two characteristic green emission bands and one red emission band were situated at 527, 548 and 670 nm, corresponding to the transitions 2H11/24I15/2, 4S3/24I15/2 and 4F9/24I15/2, respectively. The optimal photoluminescence (PL) were found in the NBT–BIT–0.20Er sample, and the emission color transforms from green to yellowish green. Temperature dependence of fluorescence intensity ratio (FIR) for NBT–BIT–0.20Er was measured ranging from 290 to 440 K and its maximum sensitivity was calculated to be about 0.0020 K−1 at 290 K. Dielectric measurements indicated that TC slightly increased simultaneously with the decrease of tanδ. Therefore, this ceramic has potential applications for high-temperature multifunctional devices.

Keywords inter-growth structure      photoluminescence (PL)      electrical properties      multifunctional materials     
Corresponding Author(s): Xiangping JIANG   
Online First Date: 12 January 2017    Issue Date: 22 January 2017
 Cite this article:   
Yalin JIANG,Xiangping JIANG,Chao CHEN, et al. Photoluminescence and electrical properties of Er3+-doped Na0.5Bi4.5Ti4O15--Bi4Ti3O12 inter-growth ferroelectrics ceramics[J]. Front. Mater. Sci., 2017, 11(1): 51-58.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-017-0367-y
https://academic.hep.com.cn/foms/EN/Y2017/V11/I1/51
Fig.1  XRD patterns of NBT–BIT–xEr ceramics (x = 0.00, 0.05, 0.10, 0.15, 0.20 and 0.25). Inset: XRD amplification patterns of the (118) peaks from 30° to 31° and the HRTEM image of pure NBT–BIT ceramics.
Fig.2  SEM images of NBT–BIT–xEr ceramics with the varying Er3+ content of (a)x = 0.00, (b)x = 0.05, (c)x = 0.10, (d)x = 0.15, (e)x = 0.20, and (f)x = 0.25.
Fig.3  Raman spectra of NBT–BIT–xEr ceramics.
Fig.4  UC emission spectra of NBT–BIT–xEr ceramics with varying the Er3+ content (x) under the 980 nm excitation.
Fig.5  Integrated schematic diagram of Er3+ energy levels in the NBT–BIT–xEr system.
Fig.6  The ratio variation from the 548 nm green to the 670 nm red emissions for NBT–BIT–xEr ceramics with x = 0.05, 0.10, 0.15, 0.20, and 0.25. The inset shows CIE chromaticity coordinates of NBT–BIT–xEr ceramics.
Fig.7  (a) Normalized green UC emission spectra of NBT–BIT–0.20Er at different temperatures. (b) Lognormal plot of the FIR as a function of inverse absolute temperature. (c) Sensitivity as a function of absolute temperature.
Fig.8  Temperature dependence of dielectric constant and loss measured at 100 kHz for NBT–BIT–xEr ceramics with x = 0.00, 0.05, 0.10, 0.15, 0.20, and 0.25.
Composition, x εr εm Tm /°C TC /°C tanδ
0.00 251.3 1832 649 657 0.82
0.05 243.0 1930 653 659 0.78
0.10 239.7 1555 651 661 0.74
0.15 207.1 1482 648 660 0.73
0.20 167.4 1140 651 666 0.63
0.25 157.6 1205 652 665 0.61
Tab.1  Electrical properties of NBT–BIT–xEr ceramics
14 Parida G, Bera J. Electrical properties of niobium doped Bi4Ti3O12–SrBi4Ti4O15 intergrowth ferroelectrics. Ceramics International, 2014, 40(2): 3139–3144
https://doi.org/10.1016/j.ceramint.2013.09.131
15 Yokoi A, Sugishita J. Ferroelectric properties of mixed bismuth layer-structured Na0.5Bi8.5Ti7O27, ceramic and SrxNa0.5−x/2 Bi8.5−x/2Ti7O27. Journal of Alloys and Compounds, 2008, 452(2): 467–472
https://doi.org/10.1016/j.jallcom.2007.08.056
16 Wei T, Li C P, Zhou Q J, . Upconversion luminescence and ferroelectric properties of Er3+ doped Bi4Ti3O12–SrBi4Ti4O15. Materials Letters, 2014, 118(3): 92–95
https://doi.org/10.1016/j.matlet.2013.12.054
17 Bokolia R, Thakur O P, Rai V K, . Dielectric, ferroelectric and photoluminescence properties of Er3+ doped Bi4Ti3O12 ferroelectric ceramics. Ceramics International, 2015, 41(4): 6055–6066
https://doi.org/10.1016/j.ceramint.2015.01.062
18 Hui X, Peng D, Zou H, . A new multifunctional Aurivillius oxide Na0.5Er0.5Bi4Ti4O15: Up-conversion luminescent, dielectric, and piezoelectric properties. Ceramics International, 2014, 40(8): 12477–12483
https://doi.org/10.1016/j.ceramint.2014.04.102
19 Wei T, Zhang T B, Ma Y J, . Up-conversion photoluminescence and temperature sensing properties of Er-doped Bi4Ti3O12 nanoparticles with good water-resistance performance. RSC Advances, 2016, 6(9): 7643–7652
https://doi.org/10.1039/C5RA24776D
1 Auzel F. Upconversion and anti-Stokes processes with f and d ions in solids. Chemical Reviews, 2004, 104(1): 139–173
https://doi.org/10.1021/cr020357g pmid: 14719973
20 Meza-Rocha A N, Huerta E F, Caldiño U, . Dependence of the up-conversion emission of Li+, co-doped Y2O3:Er3+, films with dopant concentration. Journal of Luminescence, 2015, 167(6): 352–359
https://doi.org/10.1016/j.jlumin.2015.07.003
2 Boyer J C, Vetrone F, Cuccia L A, . Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors. Journal of the American Ceramic Society, 2006, 128(23): 7444–7445
https://doi.org/10.1021/ja061848b pmid: 16756290
3 Dong B, Liu D P, Wang X J, . Optical thermometry through infrared excited green upconversion emissions in Er3+–Yb3+ codoped Al2O3. Applied Physics Letters, 2007, 90(18): 181117 (3 pages)
4 Hao J, Zhang Y, Wei X. Electric-induced enhancement and modulation of upconversion photoluminescence in epitaxial BaTiO3:Yb/Er thin films. Angewandte Chemie International Edition, 2011, 50(30): 6876–6880
https://doi.org/10.1002/anie.201101374 pmid: 21656618
5 Zuo Q, Luo L, Li W, . An effective method to detect the Curie transition of Er3+/Yb3+ co-doped BaTiO3 ceramics by up-conversion photoluminescence intensity ratio. Journal of Physics D: Applied Physics, 2016, 49(26): 265303
https://doi.org/10.1088/0022-3727/49/26/265303
6 Zuo Q, Luo L, Yao Y. High dielectric, piezoelectric, upconversion photoluminescence and low-temperature sensing properties in Ba0.7Sr0.3TiO3–BaZr0.2Ti0.8O3:Ho/Yb ceramics. Journal of Electronic Materials, 2016, 45(2): 970–975
https://doi.org/10.1007/s11664-015-4247-x
21 Ran W, Wang L, Li H, . Luminescence properties and energy transfer of CdWO4: Sm3+, Bi3+, M+ (M= Li, Na, K) phosphors for white LEDs. Ceramics International, 2015, 41(3): 4301– 4307
https://doi.org/10.1016/j.ceramint.2014.11.117
22 Wang C M, Wang J F. High performance Aurivillius phase sodium–potassium bismuth titanate lead-free piezoelectric ceramics with lithium and cerium modification. Applied Physics Letters, 2006, 89(20): 202905 (3 pages)
23 Zhao Y, Fan H, Ren X, . Lead-free Bi5−xLaxTi3FeO15 (x = 0, 1) nanofibers toward wool keratin-based biocompatible piezoelectric nanogenerators. Journal of Materials Chemistry C: Materials for Optical, Magnetic and Electronic Devices, 2016, 4(30): 7324–7331
https://doi.org/10.1039/C6TC01828A
24 Long C, Fan H, Li M, . Crystal structure and enhanced electromechanical properties of Aurivillius ferroelectric ceramics, Bi4Ti3−x(Mg1/3Nb2/3)xO12. Scripta Materialia, 2014, 75(3): 70–73
https://doi.org/10.1016/j.scriptamat.2013.11.025
25 Long C, Fan H, Li M. High temperature Aurivillius piezoelectrics: the effect of (Li, Ln) modification on the structure and properties of (Li, Ln)0.06(Na, Bi)0.44Bi2Nb2O9 (Ln= Ce, Nd, La and Y). Dalton Transactions, 2013, 42(10): 3561–3570
https://doi.org/10.1039/c2dt32564k pmid: 23283067
7 Capobianco J A, Vetrone F, Boyer J C, . Enhancement of red emission (4F9/2→4I15/2) via upconversion in bulk and nanocrystalline cubic Y2O3:Er3+. The Journal of Physical Chemistry B, 2002, 106(6): 1181–1187
https://doi.org/10.1021/jp0129582
8 Higuchi H, Takahashi M, Kawamoto Y, . Optical transitions and frequency upconversion emission of Er3+ ions in Ga2S3–GeS2–La2S3 glasses. Journal of Applied Physics, 1998, 83(1): 19–27
https://doi.org/10.1063/1.366696
9 Jiang X, Jiang X, Chen C, . Photoluminescence, structural, and electrical properties of erbium-doped Na0.5Bi4.5Ti4O15 ferroelectric ceramics. Journal of the American Ceramic Society, 2016, 99(4): 1332–1339
https://doi.org/10.1111/jace.14115
10 Wang X, Jiang X, Jiang H, . Effects of B-site Co2O3 doping on microstructure and electrical properties of Na0.25K0.25Bi2.5Nb2O9 ceramics. Journal of Alloys and Compounds, 2015, 646: 528–531
https://doi.org/10.1016/j.jallcom.2015.05.168
11 Long C, Chang Q, Wu Y, . New layer-structured ferroelectric polycrystalline materials, Na0.5NdxBi4.5−xTi4O15: crystal structures, electrical properties and conduction behaviors. Journal of Materials Chemistry C: Materials for Optical, Magnetic and Electronic Devices, 2015, 3(34): 1214–1218
https://doi.org/10.1039/C5TC01237F
12 Peng D, Zou H, Xu C, . Upconversion luminescence, ferroelectrics and piezoelectrics of Er doped SrBi4Ti4O15. AIP Advances, 2012, 2(4): 740–743
https://doi.org/10.1063/1.4773318
13 Peng D, Wang X, Xu C, . Bright upconversion emission, increased Tc, enhanced ferroelectric and piezoelectric properties in Er-doped CaBi4Ti4O15 multifunctional ferroelectric oxides. Journal of the American Ceramic Society, 2013, 96(1): 184–190
https://doi.org/10.1111/jace.12002
26 Sakamoto W, Imada K, Shimura T, . Synthesis and properties of intergrown Bi4Ti3O12–SrBi4Ti4O15 ferroelectric thin films by chemical solution deposition. Japanese Journal of Applied Physics, 2005, 44(9B): 6952–6956
https://doi.org/10.1143/JJAP.44.6952
27 Xiao P, Guo Y, Tian M, . Improved ferroelectric/piezoelectric properties and bright green/UC red emission in (Li,Ho)-doped CaBi4Ti4O15 multifunctional ceramics with excellent temperature stability and superior water-resistance performance. Dalton Transactions, 2015, 44(39): 17366–17380
https://doi.org/10.1039/C5DT02728D pmid: 26387782
28 Parida G, Bera J. Effect of La-substitution on the structure, dielectric and ferroelectric properties of Nb modified SrBi8Ti7O27 ceramics. Materials Research Bulletin, 2015, 68: 155–159
https://doi.org/10.1016/j.materresbull.2015.03.059
29 Zhu J, Chen X B, He J H, . Raman scattering investigations on lanthanum-doped Bi4Ti3O12–SrBi4Ti4O15 intergrowth ferroelectrics. Journal of Solid State Chemistry, 2005, 178(9): 2832–2837
https://doi.org/10.1016/j.jssc.2005.06.028
30 Wang W, Gu S P, Mao X Y, . Effect of Nd modification on electrical properties of mixed-layer Aurivillius phase Bi4Ti3O12–SrBi4Ti4O15. Journal of Applied Physics, 2007, 102(2): 024102 (9 pages)
31 Newnham R E. Cation ordering in Na0.5Bi4.5Ti4O15. Materials Research Bulletin, 1967, 2(11): 1041–1044
https://doi.org/10.1016/0025-5408(67)90111-0
32 Fischer L H, Harms G S, Wolfbeis O S. Upconverting nanoparticles for nanoscale thermometry. Angewandte Chemie International Edition, 2011, 50(20): 4546–4551
https://doi.org/10.1002/anie.201006835 pmid: 21495125
33 Du P, Luo L, Li W, . Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 ceramic. Applied Physics Letters, 2014, 104(15): 152902
https://doi.org/10.1063/1.4871378
34 Tian Y, Tian B, Cui C E, . Size-dependent upconversion luminescence and temperature sensing behavior of spherical Gd2O3: Yb3+/Er3+ phosphor. RSC Advances, 2015, 5(19): 14123–14128
https://doi.org/10.1039/C4RA13204A
35 Li C, Dong B, Li S, . Er3+–Yb3+ co-doped silicate glass for optical temperature sensor. Chemical Physics Letters, 2007, 443(4‒6): 426–429
https://doi.org/10.1016/j.cplett.2007.06.081
36 Li J, Fan H, Chen X, . Structural and photoluminescence of Mn-doped ZnO single-crystalline nanorods grown via solvothermal method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 349(1–3): 202–206
https://doi.org/10.1016/j.colsurfa.2009.08.019
37 Li J, Fan H, Jia X, . Electrostatic spray deposited polycrystalline zinc oxide films for ultraviolet luminescence device applications. Journal of Alloys and Compounds, 2009, 481(1–2): 735–739
https://doi.org/10.1016/j.jallcom.2009.03.094
38 Wang W, Shan D, Sun J B, . Aliovalent B-site modification on three- and four-layer Aurivillius intergrowth. Journal of Applied Physics, 2008, 103(4): 044102 (7 pages)
39 Wu Y, Limmer S J, Chou T P, . Influence of tungsten doping on dielectric properties of strontium bismuth niobate ferroelectric ceramics. Journal of Materials Science Letters, 2002, 21(12): 947–949
https://doi.org/10.1023/A:1016077724427
40 Isupov V A. Some characteristic features of layered ferroelectrics of the type Am−1Bi2MmO3m+3. Physics of the Solid State, 1997, 39(1): 116–117
https://doi.org/10.1134/1.1130132
41 Peng Z, Chen Y, Chen Q, . Correlation between lattice distortion and electrical properties on Bi4Ti3O12 ceramics with W/Ni modifications. Journal of Alloys and Compounds, 2014, 590(2): 210–214
https://doi.org/10.1016/j.jallcom.2013.12.096
42 Sivakumar T, Itoh M. Ferroelectric phase transitions in new Aurivillius oxides: Bi2+2xSr1−2xNb2−xScxO9. Journal of Materials Chemistry, 2011, 21(29): 10865–10870
https://doi.org/10.1039/c1jm11297j
43 Diao C L, Zheng H W, Zhang Y G, . Structure, photoluminescence and electrical properties of BaBi3.5Eu0.5Ti4O15 ceramics. Ceramics International, 2014, 40(9): 13827–13832
https://doi.org/10.1016/j.ceramint.2014.05.099
[1] Fang LIU, Xiangping JIANG, Chao CHEN, Xin NIE, Xiaokun HUANG, Yunjing CHEN, Hao HU, Chunyang SU. Structural, electrical and photoluminescence properties of Er3+-doped SrBi4Ti4O15--Bi4Ti3O12 inter-growth ceramics[J]. Front. Mater. Sci., 2019, 13(1): 99-106.
[2] Xiang XIA,Xiangping JIANG,Chao CHEN,Xingan JIANG,Na TU,Yunjing CHEN. Effects of Cr2O3 doping on the microstructure and electrical properties of (Ba,Ca)(Zr,Ti)O3 lead-free ceramics[J]. Front. Mater. Sci., 2016, 10(2): 203-210.
[3] Xing-an JIANG,Xiang-ping JIANG,Chao CHEN,Na TU,Yun-jing CHEN,Ban-chao ZHANG. Photoluminescence and electrical properties of Eu3+-doped Na0.5Bi4.5Ti4O15-based ferroelectrics under blue light excitation[J]. Front. Mater. Sci., 2016, 10(1): 31-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed