Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2017, Vol. 11 Issue (2) : 93-105    https://doi.org/10.1007/s11706-017-0373-0
REVIEW ARTICLE
Stem cell homing-based tissue engineering using bioactive materials
Yinxian YU1, Binbin SUN2, Chengqing YI1, Xiumei MO2()
1. Department of Orthopaedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
2. State Key Lab for Modification of Chemical Fibers & Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
 Download: PDF(256 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Tissue engineering focuses on repairing tissue and restoring tissue functions by employing three elements: scaffolds, cells and biochemical signals. In tissue engineering, bioactive material scaffolds have been used to cure tissue and organ defects with stem cell-based therapies being one of the best documented approaches. In the review, different biomaterials which are used in several methods to fabricate tissue engineering scaffolds were explained and show good properties (biocompatibility, biodegradability, and mechanical properties etc.) for cell migration and infiltration. Stem cell homing is a recruitment process for inducing the migration of the systemically transplanted cells, or host cells, to defect sites. The mechanisms and modes of stem cell homing-based tissue engineering can be divided into two types depending on the source of the stem cells: endogenous and exogenous. Exogenous stem cell-based bioactive scaffolds have the challenge of long-term culturing in vitro and for endogenous stem cells the biochemical signal homing recruitment mechanism is not clear yet. Although the stem cell homing-based bioactive scaffolds are attractive candidates for tissue defect therapies, based on in vitrostudies and animal tests, there is still a long way before clinical application.

Keywords stem cell homing      cell migration      cell proliferation      tissue engineering      scaffold      biochemical signals     
Corresponding Author(s): Xiumei MO   
Online First Date: 24 March 2017    Issue Date: 26 May 2017
 Cite this article:   
Yinxian YU,Binbin SUN,Chengqing YI, et al. Stem cell homing-based tissue engineering using bioactive materials[J]. Front. Mater. Sci., 2017, 11(2): 93-105.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-017-0373-0
https://academic.hep.com.cn/foms/EN/Y2017/V11/I2/93
Fig.1  The triad of stem cell homing-based tissue engineering.
Fig.2  Schematics of the two principal mechanisms and models of stem cell homing-based tissue engineering: (a) exogenous; (b) endogenous.
Bioactive materialsBiochemical signalsStem cellsExperimental studyRefs.
BonePLA/β-TCPKLD12/KLD12-PMSCs (endogenous)repair of rat calvarial defects[]
CPC/hydrogelhUCMSCs (exogenous)culture of hUCMSCs[]
Bioactive glass nanoparticlesMSCs (endogenous)rat subcutaneous tissues[]
PCLBMSCs (endogenous)culture of BMSCs in vitro[]
PHB/PHBHHxhASCs (exogenous)subcutaneous layer implanted in nude mice[]
CartilagePCL/HATGF-β3endogenous stem cellscartilage defects in a rabbit model[]
PGA/HAautologous serumMSCs (endogenous)full-thickness cartilage defect in sheep[]
PLLCL/poly (propylene glycol)NCSCs (exogenous)sciatic nerve defects in a rat model[]
NerveSilicone tubeTGF-β3DPSCs (exogenous)facial nerve defects in a rabbit model[]
Cerebellar ECMBDNF/NGFNCSCs (exogenous)subcutaneous and intracranial implantation in a rat model[]
SkinColl/PLLCLBMSCs (exogenous)culture of BMSCs in vitro[]
Tab.1  Different applications of stem cell homing-based tissue engineering using bioactive materials
1 Nucera S, Biziato D, De Palma M. The interplay between macrophages and angiogenesis in development, tissue injury and regeneration. The International Journal of Developmental Biology, 2011, 55(4–5): 495–503
https://doi.org/10.1387/ijdb.103227sn pmid: 21732273
2 Tanaka H, Sugimoto H, Yoshioka T, et al.. Role of granulocyte elastase in tissue injury in patients with septic shock complicated by multiple-organ failure. Annals of Surgery, 1991, 213(1): 81–85
https://doi.org/10.1097/00000658-199101000-00014 pmid: 1985543
3 Chancellor M B, Huard J, Capelli C, et al.. Rapid preparation of stem cell matrices for use in tissue and organ treatment and repair. European Patent, EP1372398, 2013-07-10
4 Schrier R W, Parikh C R. Comparison of renal injury in myeloablative autologous, myeloablative allogeneic and non-myeloablative allogeneic haematopoietic cell transplantation. Nephrology, Dialysis, Transplantation, 2005, 20(4): 678–683
https://doi.org/10.1093/ndt/gfh720 pmid: 15741210
5 Battiston B, Geuna S, Ferrero M, et al.. Nerve repair by means of tubulization: literature review and personal clinical experience comparing biological and synthetic conduits for sensory nerve repair. Microsurgery, 2005, 25(4): 258–267
https://doi.org/10.1002/micr.20127 pmid: 15934044
6 Wiria F E, Leong K F, Chua C K, et al.. Poly-ε-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomaterialia, 2007, 3(1): 1–12
https://doi.org/10.1016/j.actbio.2006.07.008 pmid: 17055789
7 Luo Y, Shoichet M S. A photolabile hydrogel for guided three-dimensional cell growth and migration. Nature Materials, 2004, 3(4): 249–253
https://doi.org/10.1038/nmat1092 pmid: 15034559
8 Atala A. Engineering tissues, organs and cells. Journal of Tissue Engineering and Regenerative Medicine, 2007, 1(2): 83–96
https://doi.org/10.1002/term.18 pmid: 18038397
9 Hutmacher D W, Sittinger M, Risbud M V. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends in Biotechnology, 2004, 22(7): 354–362
https://doi.org/10.1016/j.tibtech.2004.05.005 pmid: 15245908
10 Meinel L, Karageorgiou V, Fajardo R, et al.. Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow. Annals of Biomedical Engineering, 2004, 32(1): 112–122
https://doi.org/10.1023/B:ABME.0000007796.48329.b4 pmid: 14964727
11 Giannobile W V. Periodontal tissue engineering by growth factors. Bone, 1996, 19(1 Suppl): 23–37
https://doi.org/10.1016/S8756-3282(96)00127-5 pmid: 8830996
12 Ito Y. Tissue engineering by immobilized growth factors. Materials Science and Engineering C, 1998, 6(4): 267–274
https://doi.org/10.1016/S0928-4931(98)00061-7
13 Gallagher K A, Liu Z J, Xiao M, et al.. Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1α. The Journal of Clinical Investigation, 2007, 117(5): 1249–1259
https://doi.org/10.1172/JCI29710 pmid: 17476357
14 Wojakowski W, Kucia M, Milewski K, et al.. The role of CXCR4/SDF-1, CD117/SCF, and c-met/HGF chemokine signalling in the mobilization of progenitor cells and the parameters of the left ventricular function, remodelling, and myocardial perfusion following acute myocardial infarction. European Heart Journal Supplements, 2008, 10(suppl K): K16–K23
https://doi.org/10.1093/eurheartj/sun052
15 Schenk S, Mal N, Finan A, et al.. Monocyte chemotactic protein-3 is a myocardial mesenchymal stem cell homing factor. Stem Cells, 2007, 25(1): 245–251
https://doi.org/10.1634/stemcells.2006-0293 pmid: 17053210
16 Chen F M, Zhang M, Wu Z F. Toward delivery of multiple growth factors in tissue engineering. Biomaterials, 2010, 31(24): 6279–6308
https://doi.org/10.1016/j.biomaterials.2010.04.053 pmid: 20493521
17 Brody S, Pandit A. Approaches to heart valve tissue engineering scaffold design. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2007, 83B(1): 16–43
https://doi.org/10.1002/jbm.b.30763 pmid: 17318822
18 Gao C, Wan Y, Yang C, et al.. Preparation and characterization of bacterial cellulose sponge with hierarchical pore structure as tissue engineering scaffold. Journal of Porous Materials, 2011, 18(2): 139–145
https://doi.org/10.1007/s10934-010-9364-6
19 Jha B S, Ayres C E, Bowman J R, et al.. Electrospun collagen: a tissue engineering scaffold with unique functional properties in a wide variety of applications.Journal of Nanomaterials, 2011, (15): 367–371
20 Zhu H, Ji J, Shen J. Biomacromolecules electrostatic self-assembly on 3-dimensional tissue engineering scaffold. Biomacromolecules, 2004, 5(5): 1933–1939
https://doi.org/10.1021/bm049753u pmid: 15360308
21 McManus M C, Boland E D, Simpson D G, et al.. Electrospun fibrinogen: feasibility as a tissue engineering scaffold in a rat cell culture model. Journal of Biomedical Materials Research Part A, 2007, 81(2): 299–309
https://doi.org/10.1002/jbm.a.30989 pmid: 17120217
22 Chen Q Z, Thompson I D, Boccaccini A R. 45S5 Bioglass-derived glass–ceramic scaffolds for bone tissue engineering. Biomaterials, 2006, 27(11): 2414–2425
https://doi.org/10.1016/j.biomaterials.2005.11.025 pmid: 16336997
23 Xu T, Miszuk J M, Zhao Y, et al.. Electrospun polycaprolactone 3D nanofibrous scaffold with interconnected and hierarchically structured pores for bone tissue engineering. Advanced Healthcare Materials, 2015, 4(15): 2238–2246
https://doi.org/10.1002/adhm.201500345 pmid: 26332611
24 Yin G B, Zhang Y Z, Wang S D, et al.. Study of the electrospun PLA/silk fibroin-gelatin composite nanofibrous scaffold for tissue engineering. Journal of Biomedical Materials Research Part A, 2010, 93(1): 158–163 
pmid: 19536837
25 Sakimura K, Matsumoto T, Miyamoto C, et al.. Effects of insulin-like growth factor I on transforming growth factor β1 induced chondrogenesis of synovium-derived mesenchymal stem cells cultured in a polyglycolic acid scaffold. Cells, Tissues, Organs, 2006, 183(2): 55–61
https://doi.org/10.1159/000095509 pmid: 17053321
26 Ma Z, Gao C, Gong Y, et al.. Cartilage tissue engineering PLLA scaffold with surface immobilized collagen and basic fibroblast growth factor. Biomaterials, 2005, 26(11): 1253–1259
https://doi.org/10.1016/j.biomaterials.2004.04.031 pmid: 15475055
27 Park S A, Lee S H, Kim W D. Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering. Bioprocess and Biosystems Engineering, 2011, 34(4): 505–513
https://doi.org/10.1007/s00449-010-0499-2 pmid: 21170553
28 Kim S H, Kwon J H, Chung M S, et al.. Fabrication of a new tubular fibrous PLCL scaffold for vascular tissue engineering. Journal of Biomaterials Science. Polymer Edition, 2006, 17(12): 1359–1374
https://doi.org/10.1163/156856206778937244 pmid: 17260508
29 Rockwood D N, Preda R C, Yücel T, et al.. Materials fabrication from Bombyx mori silk fibroin. Nature Protocols, 2011, 6(10): 1612–1631
https://doi.org/10.1038/nprot.2011.379 pmid: 21959241
30 Yang J W, Zhang Y F, Sun Z Y, et al.. Dental pulp tissue engineering with bFGF-incorporated silk fibroin scaffolds. Journal of Biomaterials Applications, 2015, 30(2): 221–229
https://doi.org/10.1177/0885328215577296 pmid: 25791684
31 Zhang K, Wang H, Huang C, et al.. Fabrication of silk fibroin blended P(LLA-CL) nanofibrous scaffolds for tissue engineering. Journal of Biomedical Materials Research Part A, 2010, 93(3): 984–993
pmid: 19722280
32 Prabhakaran M P, Venugopal J R, Chyan T T, et al.. Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Tissue Engineering Part A, 2008, 14(11): 1787–1797
https://doi.org/10.1089/ten.tea.2007.0393 pmid: 18657027
33 Courtney T, Sacks M S, Stankus J, et al.. Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy. Biomaterials, 2006, 27(19): 3631–3638
pmid: 16545867
34 Burdick J A, Anseth K S. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials, 2002, 23(22): 4315–4323
https://doi.org/10.1016/S0142-9612(02)00176-X pmid: 12219821
35 Sill T J, von Recum H A. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials, 2008, 29(13): 1989–2006
https://doi.org/10.1016/j.biomaterials.2008.01.011 pmid: 18281090
36 Huang Z M, Zhang Y Z, Kotaki M, et al.. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 2003, 63(15): 2223–2253
https://doi.org/10.1016/S0266-3538(03)00178-7
37 Jin H J, Chen J, Karageorgiou V, et al.. Human bone marrow stromal cell responses on electrospun silk fibroin mats. Biomaterials, 2004, 25(6): 1039–1047
https://doi.org/1 0.1016/S0142-9612(03)00609-4 pmid: 14615169
38 Panseri S, Cunha C, Lowery J, et al.. Electrospun micro- and nanofiber tubes for functional nervous regeneration in sciatic nerve transections. BMC Biotechnology, 2008, 8(1): 39
https://doi.org/10.1186/1472-6750-8-39 pmid: 18405347
39 Wang C Y, Liu J J, Fan C Y, et al.. The effect of aligned core–shell nanofibres delivering NGF on the promotion of sciatic nerve regeneration. Journal of Biomaterials Science: Polymer Edition, 2012, 23(1–4): 167–184
https://doi.org/10.1163/092050610X545805 pmid: 21192836
40 Keshaw H, Thapar N, Burns A J, et al.. Microporous collagen spheres produced via thermally induced phase separation for tissue regeneration. Acta Biomaterialia, 2010, 6(3): 1158–1166
https://doi.org/10.1016/j.actbio.2009.08.044 pmid: 19733702
41 Chun K W, Cho K C, Kim S H, et al.. Controlled release of plasmid DNA from biodegradable scaffolds fabricated using a thermally-induced phase-separation method. Journal of Biomaterials Science: Polymer Edition, 2004, 15(11): 1341–1353
https://doi.org/10.1163/1568562042368103 pmid: 15648567
42 Ma H, Hu J, Ma P X. Polymer scaffolds for small-diameter vascular tissue engineering. Advanced Functional Materials, 2010, 20(17): 2833–2841
https://doi.org/10.1002/adfm.201000922 pmid: 24501590
43 Kim M, Kim G H. Electrohydrodynamic direct printing of PCL/collagen fibrous scaffolds with a core/shell structure for tissue engineering applications. Chemical Engineering Journal, 2015, 279: 317–326
https://doi.org/10.1016/j.cej.2015.05.047
44 Lee J W, Choi Y J, Yong W J, et al.. Development of a 3D cell printed construct considering angiogenesis for liver tissue engineering. Biofabrication, 2016, 8(1): 015007
https://doi.org/10.1088/1758-5090/8/1/015007 pmid: 26756962
45 Goole J, Amighi K. 3D printing in pharmaceutics: A new tool for designing customized drug delivery systems. International Journal of Pharmaceutics, 2016, 499(1–2): 376–394 
https://doi.org/10.1016/j.ijpharm.2015.12.071 pmid: 26757150
46 Beltrami A P, Barlucchi L, Torella D, et al.. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 2003, 114(6): 763–776
https://doi.org/10.1016/S0092-8674(03)00687-1 pmid: 14505575
47 Daley G Q, Scadden D T. Prospects for stem cell-based therapy. Cell, 2008, 132(4): 544–548
https://doi.org/10.1016/j.cell.2008.02.009 pmid: 18295571
48 Sieveking D P, Ng M K C. Cell therapies for therapeutic angiogenesis: back to the bench. Vascular Medicine, 2009, 14(2): 153–166
https://doi.org/10.1177/1358863X08098698 pmid: 19366823
49 Bajada S, Mazakova I, Richardson J B, et al.. Updates on stem cells and their applications in regenerative medicine. Journal of Tissue Engineering and Regenerative Medicine, 2008, 2(4): 169–183
https://doi.org/10.1002/term.83 pmid: 18493906
50 Teo A K K, Vallier L. Emerging use of stem cells in regenerative medicine. The Biochemical Journal, 2010, 428(1): 11–23
https://doi.org/10.1042/BJ20100102 pmid: 20423328
51 Quesenberry P J, Becker P S. Stem cell homing: rolling, crawling, and nesting. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(26): 15155–15157
https://doi.org/10.1073/pnas.95.26.15155 pmid: 9860935
52 Khaldoyanidi S. Directing stem cell homing. Cell Stem Cell, 2008, 2(3): 198–200
https://doi.org/10.1016/j.stem.2008.02.012 pmid: 18371444
53 Nakatomi H, Kuriu T, Okabe S, et al.. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell, 2002, 110(4): 429–441
https://doi.org/10.1016/S0092-8674(02)00862-0 pmid: 12202033
54 Méndez-Ferrer S, Michurina T V, Ferraro F, et al.. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature, 2010, 466(7308): 829–834
https://doi.org/10.1038/nature09262 pmid: 20703299
55 Chen F M, Zhang J, Zhang M, et al.. A review on endogenous regenerative technology in periodontal regenerative medicine. Biomaterials, 2010, 31(31): 7892–7927
https://doi.org/10.1016/j.biomaterials.2010.07.019 pmid: 20684986
56 Gomillion C T, Burg K J L. Stem cells and adipose tissue engineering. Biomaterials, 2006, 27(36): 6052–6063
https://doi.org/10.1016/j.biomaterials.2006.07.033 pmid: 16973213
57 Salcedo L, Sopko N, Jiang H H, et al.. Chemokine upregulation in response to anal sphincter and pudendal nerve injury: potential signals for stem cell homing. International Journal of Colorectal Disease, 2011, 26(12): 1577–1581
https://doi.org/10.1007/s00384-011-1269-6 pmid: 21706136
58 Ko I K, Lee S J, Atala A, et al.. In situ tissue regeneration through host stem cell recruitment. Experimental & Molecular Medicine, 2013, 45(11): e57
https://doi.org/10.1038/emm.2013.118 pmid: 24232256
59 Zhou B, Han Z C, Poon M C, et al.. Mesenchymal stem/stromal cells (MSC) transfected with stromal derived factor 1 (SDF-1) for therapeutic neovascularization: enhancement of cell recruitment and entrapment. Medical Hypotheses, 2007, 68(6): 1268–1271
https://doi.org/10.1016/j.mehy.2006.09.066 pmid: 17197116
60 Butler J M, Guthrie S M, Koc M, et al.. SDF-1 is both necessary and sufficient to promote proliferative retinopathy. The Journal of Clinical Investigation, 2005, 115(1): 86–93
https://doi.org/10.1172/JCI22869 pmid: 15630447
61 Zernecke A, Schober A, Bot I, et al.. SDF-1α/CXCR4 axis is instrumental in neointimal hyperplasia and recruitment of smooth muscle progenitor cells. Circulation Research, 2005, 96(7): 784–791
https://doi.org/10.1161/01.RES.0000162100.52009.38 pmid: 15761195
62 Thevenot P, Nair A, Shen J, et al.. The effect of incorporation of SDF-1α into PLGA scaffolds on stem cell recruitment and the inflammatory response. Biomaterials, 2010, 31(14): 3997–4008
https://doi.org/10.1016/j.biomaterials.2010.01.144 pmid: 20185171
63 Riccardo L, Planell J A, Mateos-Timoneda M A, et al.. Role of ECM/peptide coatings on SDF-1α triggered mesenchymal stromal cell migration from microcarriers for cell therapy. Acta Biomaterialia, 2015, 18: 59–67
https://doi.org/10.1016/j.actbio.2015.02.008 pmid: 25702533
64 Nakamura T, Nishizawa T, Hagiya M, et al.. Molecular cloning and expression of human hepatocyte growth factor. Nature, 1989, 342(6248): 440–443
https://doi.org/10.1038/342440a0 pmid: 2531289
65 Patel M B, Pothula S P, Xu Z, et al.. The role of the hepatocyte growth factor/c-MET pathway in pancreatic stellate cell-endothelial cell interactions: anti-angiogenic implications in pancreatic cancer. Carcinogenesis, 2014, 35(8): S9
66 Neuss S, Becher E, Wöltje M, et al.. Functional expression of HGF and HGF receptor/c-met in adult human mesenchymal stem cells suggests a role in cell mobilization, tissue repair, and wound healing. Stem Cells, 2004, 22(3): 405–414
https://doi.org/10.1634/stemcells.22-3-405 pmid: 15153617
67 Schenk S, Mal N, Finan A, et al.. Monocyte chemotactic protein-3 is a myocardial mesenchymal stem cell homing factor. Stem Cells, 2007, 25(1): 245–251
https://doi.org/10.1634/stemcells.2006-0293 pmid: 17053210
68 De Becker A, Van Hummelen P, Bakkus M, et al.. Migration of culture-expanded human mesenchymal stem cells through bone marrow endothelium is regulated by matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-3. Haematologica, 2007, 92(4): 440–449
https://doi.org/10.3324/haematol.10475 pmid: 17488654
69 Border W A, Noble N A. Transforming growth factor β in tissue fibrosis. The New England Journal of Medicine, 1994, 331(19): 1286–1292
https://doi.org/10.1056/NEJM199411103311907 pmid: 7935686
70 Huang Q, Goh J C, Hutmacher D W, et al.. In vivo mesenchymal cell recruitment by a scaffold loaded with transforming growth factor β1 and the potential for in situ chondrogenesis. Tissue Engineering, 2002, 8(3): 469–482
https://doi.org/10.1089/107632702760184727 pmid: 12167232
71 Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocrine Reviews, 1997, 18(1): 4–25
pmid: 9034784
72 Aiello L P, Avery R L, Arrigg P G, et al.. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. The New England Journal of Medicine, 1994, 331(22): 1480–1487
https://doi.org/10.1056/NEJM199412013312203 pmid: 7526212
73 Elçin Y M, Dixit V, Gitnick G. Extensive in vivo angiogenesis following controlled release of human vascular endothelial cell growth factor: implications for tissue engineering and wound healing. Artificial Organs, 2001, 25(7): 558–565
https://doi.org/10.1046/j.1525-1594.2001.025007558.x pmid: 11493277
74 Kim S H, Hur W, Kim J E, et al.. Self-assembling peptide nanofibers coupled with neuropeptide substance P for bone tissue engineering. Tissue Engineering Part A, 2015, 21(7–8): 1237–1246
https://doi.org/10.1089/ten.tea.2014.0472 pmid: 25411965
75 Zhao L, Weir M D, Xu H H K. An injectable calcium phosphate-alginate hydrogel-umbilical cord mesenchymal stem cell paste for bone tissue engineering. Biomaterials, 2010, 31(25): 6502–6510
https://doi.org/10.1016/j.biomaterials.2010.05.017 pmid: 20570346
76 Olmos Buitrago J, Perez R A, El-Fiqi A, et al.. Core–shell fibrous stem cell carriers incorporating osteogenic nanoparticulate cues for bone tissue engineering. Acta Biomaterialia, 2015, 28: 183–192
https://doi.org/10.1016/j.actbio.2015.09.021 pmid: 26391494
77 Yilgor P, Sousa R A, Reis R L, et al.. 3D plotted PCL scaffolds for stem cell based bone tissue engineering. Macromolecular Symposia, 2008, 269(1): 92–99
https://doi.org/10.1002/masy.200850911
78 Ye C, Hu P, Ma M X, et al.. PHB/PHBHHx scaffolds and human adipose-derived stem cells for cartilage tissue engineering. Biomaterials, 2009, 30(26): 4401–4406
https://doi.org/10.1016/j.biomaterials.2009.05.001 pmid: 19481254
79 Lee C H, Cook J L, Mendelson A, et al.. Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet, 2010, 376(9739): 440–448
https://doi.org/10.1016/S0140-6736(10)60668-X pmid: 20692530
80 Erggelet C, Endres M, Neumann K, et al.. Formation of cartilage repair tissue in articular cartilage defects pretreated with microfracture and covered with cell-free polymer-based implants. Journal of Orthopaedic Research, 2009, 27(10): 1353–1360
https://doi.org/10.1002/jor.20879 pmid: 19382184
81 Wang A, Tang Z, Park I H, et al.. Induced pluripotent stem cells for neural tissue engineering. Biomaterials, 2011, 32(22): 5023–5032
https://doi.org/10.1016/j.biomaterials.2011.03.070 pmid: 21514663
82 Zhuang Y M, Huojia M, Xu H, et al.. Effects of transforming growth factor-β_3 and dental pulp stem cells in repairing rabbit facial nerve injury. Journal of Chinese Practical Diagnosis and Therapy, 2015, (7) (in Chinese)
83 Zhu T, Tang Q, Shen Y, et al.. An acellular cerebellar biological scaffold: Preparation, characterization, biocompatibility and effects on neural stem cells. Brain Research Bulletin, 2015, 113: 48–57
https://doi.org/10.1016/j.brainresbull.2015.03.003 pmid: 25791359
84 Jin G, Prabhakaran M P, Ramakrishna S. Stem cell differentiation to epidermal lineages on electrospun nanofibrous substrates for skin tissue engineering. Acta Biomaterialia, 2011, 7(8): 3113–3122
https://doi.org/10.1016/j.actbio.2011.04.017 pmid: 21550425
85 Healy K E, Guldberg R E. Bone tissue engineering. Journal of Musculoskeletal & Neuronal Interactions, 2007, 7(4): 328–330
pmid: 18094496
86 Barnes B, Boden S D, Louis-Ugbo J, et al.. Lower dose of rhBMP-2 achieves spine fusion when combined with an osteoconductive bulking agent in non-human primates. Spine, 2005, 30(10): 1127–1133
https://doi.org/10.1097/01.brs.0000162623.48058.8c pmid: 15897825
87 Goekoop-Ruiterman Y P M, de Vries-Bouwstra J K, Allaart C F, et al.. Clinical and radiographic outcomes of four different treatment strategies in patients with early rheumatoid arthritis (the Best study): a randomized, controlled trial. Arthritis and Rheumatology, 2005, 52(11): 3381–3390
https://doi.org/10.1002/art.21405 pmid: 16258899
88 Ko I K, Lee S J, Atala A, et al.. In situ tissue regeneration through host stem cell recruitment. Experimental & Molecular Medicine, 2013, 45(11): e57
https://doi.org/10.1038/emm.2013.118 pmid: 24232256
89 Sirko S, Neitz A, Mittmann T, et al.. Focal laser-lesions activate an endogenous population of neural stem/progenitor cells in the adult visual cortex. Brain, 2009, 132(8): 2252–2264
https://doi.org/10.1093/brain/awp043 pmid: 19286696
90 Jayarama Reddy V, Radhakrishnan S, Ravichandran R, et al.. Nanofibrous structured biomimetic strategies for skin tissue regeneration. Wound Repair and Regeneration, 2013, 21(1): 1–16
https://doi.org/10.1111/j.1524-475X.2012.00861.x pmid: 23126632
91 Kamel R A, Ong J F, Eriksson E, et al.. Tissue engineering of skin. Journal of the American College of Surgeons, 2013, 217(3): 533–555
https://doi.org/10.1016/j.jamcollsurg.2013.03.027 pmid: 23816384
92 Ma K, Liao S, He L, et al.. Effects of nanofiber/stem cell composite on wound healing in acute full-thickness skin wounds. Tissue Engineering Part A, 2011, 17(9–10): 1413–1424
https://doi.org/10.1089/ten.tea.2010.0373 pmid: 21247260
[1] Inamullah MAITLO, Safdar ALI, Muhammad Yasir AKRAM, Farooq Khurum SHEHZAD, Jun NIE. Binary phase solid-state photopolymerization of acrylates: design, characterization and biomineralization of 3D scaffolds for tissue engineering[J]. Front. Mater. Sci., 2017, 11(4): 307-317.
[2] Juan WANG,Binbin SUN,Muhammad Aqeel BHUTTO,Tonghe ZHU,Kui YU,Jiayu BAO,Yosry MORSI,Hany EL-HAMSHARY,Mohamed EL-NEWEHY,Xiumei MO. Fabrication and characterization of Antheraea pernyi silk fibroin-blended P(LLA-CL) nanofibrous scaffolds for peripheral nerve tissue engineering[J]. Front. Mater. Sci., 2017, 11(1): 22-32.
[3] Fengyi GUAN,Jiaju LU,Xiumei WANG. A novel honeycomb cell assay kit designed for evaluating horizontal cell migration in response to functionalized self-assembling peptide hydrogels[J]. Front. Mater. Sci., 2017, 11(1): 13-21.
[4] Tong WANG,Qing LI,Gui-feng ZHANG,Gang ZHOU,Xin YU,Jing ZHANG,Xiu-mei WANG,Zhi-hui TANG. Comparative evaluation of a biomimic collagen/hydroxyapatite/β-tricaleium phosphate scaffold in alveolar ridge preservation with Bio-Oss Collagen[J]. Front. Mater. Sci., 2016, 10(2): 122-133.
[5] Shuang GAO,Zhiguo YUAN,Tingfei XI,Xiaojuan WEI,Quanyi GUO. Characterization of decellularized scaffold derived from porcine meniscus for tissue engineering applications[J]. Front. Mater. Sci., 2016, 10(2): 101-112.
[6] Jianchao ZHAN,Yosry MORSI,Hany EI-HAMSHARY,Salem S. AL-DEYAB,Xiumei MO. In vitro evaluation of electrospun gelatin–glutaraldehyde nanofibers[J]. Front. Mater. Sci., 2016, 10(1): 90-100.
[7] Yuan LIAN,Jian-Chao ZHAN,Kui-Hua ZHANG,Xiu-Mei MO. Fabrication and characterization of curcumin-loaded silk fibroin/P(LLA-CL) nanofibrous scaffold[J]. Front. Mater. Sci., 2014, 8(4): 354-362.
[8] Hong-Man WANG,Fu-Yao LI. Bibliometric analysis of the literature from the mainland of China on animal-derived regenerative implantable medical devices[J]. Front. Mater. Sci., 2014, 8(4): 403-408.
[9] Hai-Yan XU,Ning GU. Magnetic responsive scaffolds and magnetic fields in bone repair and regeneration[J]. Front. Mater. Sci., 2014, 8(1): 20-31.
[10] Chong WANG,Min WANG. Electrospun multifunctional tissue engineering scaffolds[J]. Front. Mater. Sci., 2014, 8(1): 3-19.
[11] Zhong-Bing HUANG,Guang-Fu YIN,Xiao-Ming LIAO,Jian-Wen GU. Conducting polypyrrole in tissue engineering applications[J]. Front. Mater. Sci., 2014, 8(1): 39-45.
[12] Zi-Heng LI, Shi-Chen JI, Ya-Zhen WANG, Xing-Can SHEN, Hong LIANG. Silk fibroin-based scaffolds for tissue engineering[J]. Front Mater Sci, 2013, 7(3): 237-247.
[13] Min-Dan WANG, Peng ZHAI, David J. SCHREYER, Ruo-Shi ZHENG, Xiao-Dan SUN, Fu-Zhai CUI, Xiong-Biao CHEN. Novel crosslinked alginate/hyaluronic acid hydrogels for nerve tissue engineering[J]. Front Mater Sci, 2013, 7(3): 269-284.
[14] Ning ZHU, David COOPER, Xiong-Biao CHEN, Catherine Hui NIU. A study on the in vitro degradation of poly(L-lactide)/chitosan microspheres scaffolds[J]. Front Mater Sci, 2013, 7(1): 76-82.
[15] Jin HE, Xiu-Mei WANG, Myron SPECTOR, Fu-Zhai CUI. Scaffolds for central nervous system tissue engineering[J]. Front Mater Sci, 2012, 6(1): 1-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed