Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2017, Vol. 11 Issue (2) : 155-161    https://doi.org/10.1007/s11706-017-0374-z
RESEARCH ARTICLE
Facile synthesis and electrochemical properties of layered Li[Ni1/3Mn1/3Co1/3]O2 as cathode materials for lithium-ion batteries
Yingfang ZHU1, Jingwei YOU1, Haifu HUANG1,2(), Guangxu LI1,2, Wenzheng ZHOU1,2, Jin GUO1,2()
1. Guangxi Key Laboratory for Relativistic Astrophysics, Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, College of Physics Science and Technology, Guangxi University, Nanning 530004, China
2. Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
 Download: PDF(397 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A layered oxide Li[Ni1/3Mn1/3Co1/3]O2 was synthesized by an oxalate co-precipitation method. The morphology, structural and composition of the as-papered samples synthesized at different calcination temperatures were investigated. The results indicate that calcination temperature of the sample at 850°C can improve the integrity of structural significantly. The effect of calcination temperature varying from 750°C to 950°C on the electrochemical performance of Li[Ni1/3Mn1/3Co1/3]O2, cathode material of lithium-ion batteries, has been investigated. The results show that Li[Ni1/3Mn1/3Co1/3]O2 calcined at 850°C possesses a higher capacity retention and better rate capability than other samples. The reversible capacity is up to 178.6 mA·h·g−1, and the discharge capacity still remains 176.3 mA·h·g−1 after 30 cycles. Moreover, our strategy provides a simple and highly versatile route in fabricating cathode materials for lithium-ion batteries.

Keywords Li[Mn1/3Ni1/3Co1/3]O2      cathode material      oxalate co-precipitation      lithium-ion battery     
Corresponding Author(s): Haifu HUANG,Jin GUO   
Online First Date: 06 April 2017    Issue Date: 26 May 2017
 Cite this article:   
Yingfang ZHU,Jingwei YOU,Haifu HUANG, et al. Facile synthesis and electrochemical properties of layered Li[Ni1/3Mn1/3Co1/3]O2 as cathode materials for lithium-ion batteries[J]. Front. Mater. Sci., 2017, 11(2): 155-161.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-017-0374-z
https://academic.hep.com.cn/foms/EN/Y2017/V11/I2/155
Fig.1  The schematic diagram of the synthetic route for Li[Ni1/3Mn1/3Co1/3]O2 materials.
Fig.2  SEM images: (a) oxalate precursor; (b)(c) Li[Ni1/3Mn1/3Co1/3]O2 compounds.
Fig.3  (a) EDS spectrum. (b) EDS maps of Ni, Co, Mn and O for Li[Ni1/3Mn1/3Co1/3]O2.
Fig.4  XRD patterns of Li[Ni1/3Mn1/3Co1/3]O2 calcined at different sintering temperatures.
Tab.1  (I(006)+I(102))/I(101) ratios and lattice parameters of Li[Ni1/3Mn1/3Co1/3]O2
Fig.5  (a) Charge–discharge curves of hydrothermally synthesized Li[Ni1/3Mn1/3Co1/3]O2. (b) Discharge capacities as a function of cycle number in the voltage range of 2.7–4.5 V at 0.1 C.(c) Charge–discharge curves of S-850 at different C-rates. (d) The rate capability curves of S-850.
Fig.6  Cyclic voltammetry curves of Li[Ni1/3Mn1/3Co1/3]O2 samples S-750, S-850 and S-950 in the voltage range of 2.7–4.5 V Li/Li+.
1 Rao C V, Reddy  A L M, Ishikawa  Y, et al.. LiNi1/3Co1/3Mn1/3O2-graphene composite as a promising cathode for lithium-ion batteries. ACS Applied Materials & Interfaces, 2011, 3(8): 2966–2972
https://doi.org/10.1021/am200421h pmid: 21714504
2 Tan S, Wang  L, Bian L , et al.. Highly enhanced low temperature discharge capacity of LiNi1/3Co1/3Mn1/3O2 with lithium boron oxide glass modification. Journal of Power Sources, 2015, 277: 139–146
https://doi.org/10.1016/j.jpowsour.2014.11.149
3 Hashem A M A ,  Abdel-Ghany A E ,  Eid A E , et al.. Study of the surface modification of LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion battery. Journal of Power Sources, 2011, 196(20): 8632–8637
https://doi.org/10.1016/j.jpowsour.2011.06.039
4 Cuisinier M, Dupré  N, Martin J F , et al.. Evolution of the LiFePO4 positive electrode interface along cycling monitored by MAS NMR. Journal of Power Sources, 2013, 224: 50–58
https://doi.org/10.1016/j.jpowsour.2012.08.099
5 Shaju K M, Rao  G V S, Chowdari  B V R. Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries. Electrochimica Acta, 2002, 48(2): 145–151
https://doi.org/10.1016/S0013-4686(02)00593-5
6 Lu Z H, Macneil  D D, Dahn  J R. Layered cathode materials Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 for lithium-ion batteries. Electrochemical and Solid-State Letters, 2001, 4(11): A191–A194
https://doi.org/10.1149/1.1407994
7 Belharouak I, Sun  Y K, Liu  J, et al.. Li(Ni1/3Co1/3Mn1/3)O2 as a suitable cathode for high power applications. Journal of Power Sources, 2003, 123(2): 247–252
https://doi.org/10.1016/S0378-7753(03)00529-9
8 Park S, Yoon  C, Kang S , et al.. Synthesis and structural characterization of layered Li[Ni1/3Co1/3Mn1/3]O2 cathode materials by ultrasonic spray pyrolysis method. Electrochimica Acta, 2004, 49(4): 557–563
https://doi.org/10.1016/j.electacta.2003.09.009
9 Yang Y, Xu  S, Xie M , et al.. Growth mechanisms for spherical mixed hydroxide agglomerates prepared by co-precipitation method: A case of Ni1/3Co1/3Mn1/3(OH)2. Journal of Alloys and Compounds, 2015, 619: 846–853 
https://doi.org/10.1016/j.jallcom.2014.08.152
10 Wang Z, Sun  Y, Chen L , et al.. Electrochemical characterization of positive electrode material Li(Ni1/3Co1/3Mn1/3)O2 and compati-bility with electrolyte for lithium-ion batteries. Journal of the Electrochemical Society, 2004, 151(6): A914–A921
https://doi.org/10.1149/1.1740781
11 Yoon W S, Balasubramanian  M, Yang X Q , et al.. Soft X-ray absorption spectroscopic study of a LiNi0.5Mn0.5O2 cathode during charge. Journal of the Electrochemical Society, 2004, 151(2): A246–A251
https://doi.org/10.1149/1.1637896
12 Myung S T, Lee  M H, Komaba  S, et al.. Hydrothermal synthesis of layered Li[Ni1/3Co1/3Mn1/3]O2 as positive electrode material for lithium secondary battery. Electrochimica Acta, 2005, 50(24): 4800–4806
https://doi.org/10.1016/j.electacta.2005.02.034
13 Liu L, Jiao  L, Sun J , et al.. Electrochemical performance of LiV3−2xNixMnxO8 cathode materials synthesized by the sol–gel method. Solid State Ionics, 2008, 178(33–34): 1756–1761
https://doi.org/10.1016/j.ssi.2007.11.005
14 Liu Z M, Hu  G R, Peng  Z D, et al.. Synthesis and characterization of layered Li(Ni1/3Mn1/3Co1/3)O2 cathode materials by spray-drying method. Transactions of Nonferrous Metals Society of China, 2007, 17(2): 291–295
https://doi.org/10.1016/S1003-6326(07)60087-9
15 Lu Z, Macneil  D D, Dahn  J R. Layered cathode materials Li [NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 for lithium-ion batteries. Electrochemical and Solid-State Letters, 2004, 7(12): A503–A506
16 Macneil D D, Lu  Z H, Dahn  J R. Structure and electrochemistry of Li[NixCo1−2xMnx]O2 (0<x<1/2). Electrochemical and Solid-State Letters, 2002, 149(10): A1332–A1336
17 Cho T H, Shiosaki  Y, Noguchi H . Preparation and characterization of layered LiMn1/3Ni1/3Co1/3O2 as a cathode material by an oxalate co-precipitation method. Journal of Power Sources, 2006, 159(2): 1322–1327
https://doi.org/10.1016/j.jpowsour.2005.11.080
18 Gao J, Manthiram  A. Eliminating the irreversible capacity loss of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode by blending with other lithium insertion hosts. Journal of Power Sources, 2009, 191(2): 644–647
https://doi.org/10.1016/j.jpowsour.2009.02.005
19 Gao Y, Yakovleva  M V, Ebner  W B. Novel Li[Li0.2Mn0.54Ni0.13Co0.13]O2 compounds as cathode materials for safer lithium-ion batteries. Electrochemical Society, 1998, 1(3): 117–119
20 Dahn J R. Structure and electrochemistry of Li1±yNiO2 and a new Li2NiO2 phase with the Ni(OH)2 structure. Solid State Ionics, 1990, 44(1–2): 87–97
https://doi.org/10.1016/0167-2738(90)90049-W
21 Ohzuku T, Ueda  A, Nagayama M . Electrochemistry and structural chemistry of LiNiO2 (R 3¯ m) for 4 volt secondary lithium cells. Journal of the Electrochemical Society, 1993, 140(7): 1862–1870
https://doi.org/10.1149/1.2220730
22 Li W, Reimers  J N, Dahn  J R. In situ x-ray diffraction and electrochemical studies of Li1−xNiO2. Solid State Ionics, 1993, 67(1–2): 123–130
https://doi.org/10.1016/0167-2738(93)90317-V
23 Liu L, Zhang  N, Sun K , et al.. High rate performance of Li[Ni1/3 Co1/3Mn1/3]O2 synthesized via co-precipitation method by different precipitators. Journal of Physics and Chemistry of Solids, 2009, 70(3–4): 727–731
https://doi.org/10.1016/j.jpcs.2009.02.013
24 Reimers J N, Dahn  J R, Greedan  J E, et al.. Spin glass behavior in the frustrated antiferromagnetic LiNiO2. Journal of Solid State Chemistry, 1993, 102(2): 542–552
https://doi.org/10.1006/jssc.1993.1065
25 Zheng J M, Li  J, Zhang Z R , et al.. The effects of TiO2 coating on the electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium-ion battery. Solid State Ionics, 2008, 179(27–32): 1794–1799
https://doi.org/10.1016/j.ssi.2008.01.091
26 Guo R, Shi  P, Cheng X , et al.. Effect of ZnO modification on the performance of LiNi0.5Co0.25Mn0.25O2 cathode material. Electrochimica Acta, 2009, 54(24): 5796–5803
https://doi.org/10.1016/j.electacta.2009.05.034
27 Manikandan P, Periasamy  P. Novel mixed hydroxy-carbonate precursor assisted synthetic technique for LiNi1/3Mn1/3Co1/3O2 cathode materials. Materials Research Bulletin, 2014, 50: 132–140
https://doi.org/10.1016/j.materresbull.2013.10.010
28 Song D, Wang  X, Zhou E , et al.. Recovery and heat treatment of the LiNi1/3Co1/3Mn1/3O2 cathode scrap material for lithium ion battery. Journal of Power Sources, 2013, 232: 348–352
https://doi.org/10.1016/j.jpowsour.2012.10.072
29 Sa Q, Gratz  E, He M , et al.. Synthesis of high performance LiNi1/3 Co1/3Mn1/3O2 from lithium ion battery recovery stream. Journal of Power Sources, 2015, 282: 140–145
https://doi.org/10.1016/j.jpowsour.2015.02.046
[1] Junqiang HUA, Hailiang CHU, Ying ZHU, Tingting FANG, Shujun QIU, Yongjin ZOU, Cuili XIANG, Kexiang ZHANG, Bin LI, Huanzhi ZHANG, Fen XU, Lixian SUN. Superior performance for lithium storage from an integrated composite anode consisting of SiO-based active material and current collector[J]. Front. Mater. Sci., 2020, 14(3): 243-254.
[2] Yun ZHAO, Linan YANG, Canliang MA. One-step gas-phase construction of carbon-coated Fe3O4 nanoparticle/carbon nanotube composite with enhanced electrochemical energy storage[J]. Front. Mater. Sci., 2020, 14(2): 145-154.
[3] Luoyang LI, Tian CHEN, Fengbin HUANG, Peng LIU, Qingrong YAO, Feng WANG, Jianqiu DENG. Double core---shell nanostructured Sn---Cu alloy as enhanced anode materials for lithium and sodium storage[J]. Front. Mater. Sci., 2020, 14(2): 133-144.
[4] Ruiping LIU, Ning ZHANG, Xinyu WANG, Chenhui YANG, Hui CHENG, Hanqing ZHAO. SnO2 nanoparticles anchored on graphene oxide as advanced anode materials for high-performance lithium-ion batteries[J]. Front. Mater. Sci., 2019, 13(2): 186-192.
[5] QI Hao, CAO Gao-shao, XIE Jian, ZHAO Xin-bing. Enhanced cycle stability of spinel LiMnO by a melting impregnation method[J]. Front. Mater. Sci., 2008, 2(3): 291-294.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed