Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2017, Vol. 11 Issue (2) : 106-119    https://doi.org/10.1007/s11706-017-0375-y
RESEARCH ARTICLE
Si-doping bone composite based on protein template-mediated assembly for enhancing bone regeneration
Qin YANG1,2, Yingying DU1,2, Yifan WANG1,2, Zhiying WANG1,2, Jun MA1,2, Jianglin WANG1,2(), Shengmin ZHANG1,2()
1. Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, China
2. Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(803 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Bio-inspired hybrid materials that contain organic and inorganic networks interpenetration at the molecular level have been a particular focus of interest on designing novel nanoscale composites. Here we firstly synthesized a series of hybrid bone composites, silicon-hydroxyapatites/silk fibroin/collagen, based on a specific molecular assembled strategy. Results of material characterization confirmed that silicate had been successfully doped into nano-hydroxyapatite lattice. In vitro evaluation at the cellular level clearly showed that these Si-doped composites were capable of promoting the adhesion and proliferation of rat mesenchymal stem cells (rMSCs), extremely enhancing osteoblastic differentiation of rMSCs compared with silicon-free composite. More interestingly, we found there was a critical point of silicon content in the composition on regulating multiple cell behaviors. In vivo animal evaluation further demonstrated that Si-doped composites enabled to significantly improve the repair of cranial bone defect. Consequently, our current work not only suggests fabricating a potential bone repair materials by integrating element-doping and molecular assembled strategy in one system, but also paves a new way for constructing multi-functional composite materials in the future.

Keywords silicate-doped      molecular assembly      biomimetic bone      bone regeneration      osteoblastic differentiation     
Corresponding Author(s): Jianglin WANG,Shengmin ZHANG   
Online First Date: 13 April 2017    Issue Date: 26 May 2017
 Cite this article:   
Qin YANG,Yingying DU,Yifan WANG, et al. Si-doping bone composite based on protein template-mediated assembly for enhancing bone regeneration[J]. Front. Mater. Sci., 2017, 11(2): 106-119.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-017-0375-y
https://academic.hep.com.cn/foms/EN/Y2017/V11/I2/106
Fig.1  General idea of this work. Silicon-doped HA was induced by collagen/SF bi-template to generate a specific composite of SF-collagen/silicon-HA. The interactions between the powder samples and rMSCs were systematically investigatedin vitro, and the derivative 3D porous scaffolds were evaluated by the rat cranial defect model in vivo.
Fig.2  Characterization of materials. (a) XRD analysis showed both Si-free and Si-doped HA groups exhibited the main diffraction peaks of HA in comparison with HA standard card (JCPDS-PDF 09-0432).(b) FTIR analysis indicated that each group of template-induced materials displayed the typical phosphate group and main functional groups of amides I and II due to the presence of organic protein templates.(c) TGA analysis confirmed that the template induced materials were organic-inorganic composites consisting of 20%–30% organics and 70%–80% inorganics.(d) Silicomolybdenum blue spectrophotometry confirmed that the actual value of silicon content was quite close to the theory value.(e)(f) XPS analysis showed the typical peaks of Ca and P in Si-0 group, and the typical peaks of Si in Si-doped groups. The mole ratio ofn(Ca)/n(P) or n(Ca)/[n(P) +n(Si)] of the sample was close to the theoretical value of HA (n(Ca)/n(P) = 1.67).
Fig.3  TEM images and SAED from HR-TEM analysis. The results showed that all those HA crystals presented a needle-like nano-crystal with 100 nm in length and 20 nm in width. There was on obvious difference no crystallite morphology between Si-doped and Si-free composites that mean the doping of silicon will not change the crystallite structure of HA. SAED images also confirmed that there was no preferential growth of HA crystals induced by bi-template of silk fibroin and collagen.
Fig.4  Cell proliferation and adhesion. (a) Cell proliferation of rMSCs cultured on the representative samples in growth medium for 1, 3, 5 and 7 d. It showed that both Si-doped and Si-free group exhibited excellent biocompatibility, and presented no obvious toxicity, and were able to well support cell proliferation over the time.(b) Confocal microscope images of rMSCs cultured on the samples for 12 h. (c) SEM images of rMSCs cultured on the samples for 12 h.
Fig.5  Osteoblastic differentiation of stem cell. (a) ALP activities and (c) ALP staining of each group indicated the early differentiation of rMSCs. (b) Real-time PCR showed each sample significantly enhanced osteoblastic differentiation of MSCs based on the analysis of specific osteogenic genes including osteocalcin (OCN), osteonectin (ONN), and collagen I (COL I) on day 21. The Si-0.8 group showed the best osteogenic capacity among all samples.(d) Immunofluorescence staining showed that all corresponding proteins of osteogenic genes exhibited positive staining, and the results were highly consistent with mRNA level in (b).(e) The calcium nodule staining were generated from each group. OCN, ONN, and COL I were stained by Rhodamine-labeled antibody (red), cell nuclei were stained by DAPI (blue), and F-actin were stained by FITC-labeled phalloidin (green).
Fig.6  Micro-CT analysis: (a) micro-CT scan images of the rat cranial bone defect in four groups at each time-point of 8 weeks; (b) the percentages of newly formed bone in the bone-defect cavities were significantly higher in PLGA/Si-0.8 group than others (p<0.05); (c) the BMD were significantly higher in PLGA/Si-0.8 scaffolds than the other groups (p<0.05).
Fig.7  Analysis of histological staining. Eight (8) weeks after implantation, both Hematoxylin-Eosin (H&E) and Masson Trichrome (M&T) staining showed that PLGA/Si-0.8 group was able to enhance newly formed bone compared with other three groups. It was consistent with micro-CT analysis. For H&E staining, the cytoplasm and nuclei show red and blue, respectively. For M&T staining, the cytoplasm and collagen matrixes were stained by red and blue, respectively.
  Fig. S1&chsp;?The porous scaffolds were prepared by ice-templating process, and the morphology and microstructure of the scaffolds were examined using SEM. PLGA, PLGA/Si-0 and PLGA/Si-0.8 scaffolds with high?permeability?of?pore space were obtained and Si-0 and Si-0.8 particles were distributed within the pore walls of the scaffolds and no large aggregates appeared in pores.
  Fig. S2?&chsp;Rat MSCs were used to evaluate the biological function of PLGA/Si-0 and PLGA/Si-0.8 scaffold and its potential application on bone repair. We found that the scaffolds were able to well support cell adhesion, and the resident cells exhibited obviously outspread pseudopod attaching to the adjacent pore.
  Fig. S3&chsp;?In vivo evaluation of the scaffolds. (a) Hematoxylin-Eosin and (b) Masson Trichrome staining after hypodermic?implantation for 3 weeks.
1 Mieszawska A J ,  Fourligas N ,  Georgakoudi I , et al.. Osteoinductive silk-silica composite biomaterials for bone regeneration. Biomaterials, 2010, 31(34): 8902–8910
https://doi.org/10.1016/j.biomaterials.2010.07.109 pmid: 20817293
2 Khan A F, Saleem  M, Afzal A , et al.. Bioactive behavior of silicon substituted calcium phosphate based bioceramics for bone regeneration. Materials Science and Engineering C: Materials for Biological Applications, 2014, 35: 245–252
https://doi.org/10.1016/j.msec.2013.11.013 pmid: 24411375
3 Ma R, Tang  S, Tan H , et al.. Preparation, characterization, in vitro bioactivity, and cellular responses to a polyetheretherketone bioactive composite containing nanocalcium silicate for bone repair. ACS Applied Materials & Interfaces, 2014, 6(15): 12214–12225
https://doi.org/10.1021/am504409q pmid: 25013988
4 Wang S, Wang  X, Draenert F G , et al.. Bioactive and biodegradable silica biomaterial for bone regeneration. Bone, 2014, 67: 292–304
https://doi.org/10.1016/j.bone.2014.07.025 pmid: 25088401
5 Pabbruwe M B, Standard  O C, Sorrell  C C, et al.. Effect of silicon doping on bone formation within alumina porous domains. Journal of Biomedical Materials Research Part A, 2004, 71(2): 250–257
https://doi.org/10.1002/jbm.a.30154 pmid: 15386488
6 Hing K A, Revell  P A, Smith  N, et al.. Effect of silicon level on rate, quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds. Biomaterials, 2006, 27(29): 5014–5026
https://doi.org/10.1016/j.biomaterials.2006.05.039 pmid: 16790272
7 Nakata K, Kubo  T, Numako C , et al.. Synthesis and characterization of silicon-doped hydroxyapatite. Materials Transactions, 2009, 50(5): 1046–1049
https://doi.org/10.2320/matertrans.MC200808
8 Manchón A, Alkhraisat  M, Rueda-Rodriguez C , et al.. Silicon calcium phosphate ceramic as novel biomaterial to simulate the bone regenerative properties of autologous bone. Journal of Biomedical Materials Research Part A, 2015, 103(2): 479–488
https://doi.org/10.1002/jbm.a.35196 pmid: 24737706
9 Aniagyei S E, Dufort  C, Kao C C , et al.. Self-assembly approaches to nanomaterial encapsulation in viral protein cages. Journal of Materials Chemistry, 2008, 18(32): 3763–3774
https://doi.org/10.1039/b805874c pmid: 19809586
10 He G, Dahl  T, Veis A , et al.. Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1. Nature Materials, 2003, 2(8): 552–558
https://doi.org/10.1038/nmat945 pmid: 12872163
11 Koti A S R ,  Periasamy N . Self-assembly of template-directed J-aggregates of porphyrin. Chemistry of Materials, 2003, 15(2): 369–371
https://doi.org/10.1021/cm025664h
12 Weiner S, Wagner  H D. The material bone: Structure mechanical function relations. Annual Review of Materials Science, 1998, 28(1): 271–298
https://doi.org/10.1146/annurev.matsci.28.1.271
13 Olszta M J, Cheng  X G, Jee  S S, et al.. Bone structure and formation: A new perspective. Materials Science and Engineering R: Reports, 2007, 58(3–5): 77–116
https://doi.org/10.1016/j.mser.2007.05.001
14 Wang J, Zhou  W, Hu W , et al.. Collagen/silk fibroin bi-template induced biomimetic bone-like substitutes. Journal of Biomedical Materials Research Part A, 2011, 99(3): 327–334
https://doi.org/10.1002/jbm.a.32602 pmid: 19705470
15 Hardy J G, Scheibel  T R. Composite materials based on silk proteins. Progress in Polymer Science, 2010, 35(9): 1093–1115
https://doi.org/10.1016/j.progpolymsci.2010.04.005
16 Chakraborty J, Sinha  M K, Basu  D. Biomolecular template-induced biomimetic coating of hydroxyapatite on an SS 316 L substrate. Journal of the American Ceramic Society, 2007, 90(4): 1258–1261
https://doi.org/10.1111/j.1551-2916.2007.01596.x
17 Li X, Feng  Q, Liu X , et al.. Collagen-based implants reinforced by chitin fibres in a goat shank bone defect model. Biomaterials, 2006, 27(9): 1917–1923
https://doi.org/10.1016/j.biomaterials.2005.11.013 pmid: 16310847
18 Gleeson J P, Plunkett  N A, O’Brien  F J. Addition of hydroxyapatite improves stiffness, interconnectivity and osteogenic potential of a highly porous collagen-based scaffold for bone tissue regeneration. European Cells & Materials, 2010, 20: 218–230
https://doi.org/10.22203/eCM.v020a18 pmid: 20922667
19 Collins A M, Skaer  N J V, Gheysens  T, et al.. Bone-like resorbable silk-based scaffolds for load-bearing osteoregenerative applications. Advanced Materials, 2009, 21(1): 75–78
https://doi.org/10.1002/adma.200802239
20 Denry I, Kuhn  L T. Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering. Dental Materials, 2016, 32(1): 43–53
https://doi.org/10.1016/j.dental.2015.09.008 pmid: 26423007
21 Jiang C Y, Wang  X Y, Gunawidjaja  R, et al.. Mechanical properties of robust ultrathin silk fibroin films. Advanced Functional Materials, 2007, 17(13): 2229–2237
https://doi.org/10.1002/adfm.200601136
22 Wang J, Zhou  W, Hu W , et al.. Collagen/silk fibroin bi-template induced biomimetic bone-like substitutes. Journal of Biomedical Materials Research Part A, 2011, 99(3): 327–334
https://doi.org/10.1002/jbm.a.32602 pmid: 19705470
23 Wen X-R, Tu  C-Q, Wen X-H . Determination of acetylcysteine in pharmaceutical samples by silicomolybdenum blue spectrophotometry. Journal of the Chinese Chemical Society, 2015, 62(3): 296–300
https://doi.org/10.1002/jccs.201400344
24 Wang J, Yang  Q, Mao C , et al.. Osteogenic differentiation of bone marrow mesenchymal stem cells on the collagen/silk fibroin bi-template-induced biomimetic bone substitutes. Journal of Biomedical Materials Research Part A, 2012, 100(11): 2929–2938
https://doi.org/10.1002/jbm.a.34236 pmid: 22700033
25 Wang Y, Wang  J, Hao H , et al.. In vitro and in vivo mechanism of bone tumor inhibition by selenium-doped bone mineral nanoparticles. ACS Nano, 2016, 10(11): 9927–9937
https://doi.org/10.1021/acsnano.6b03835 pmid: 27797178
26 Yao J, Tjandra  W, Chen Y Z , et al.. Hydroxyapatite nanostructure material derived using cationic surfactant as a template. Journal of Materials Chemistry, 2003, 13(12): 3053–3057
https://doi.org/10.1039/b308801d
27 Wang J, Hu  W, Liu Q , et al.. Dual-functional composite with anticoagulant and antibacterial properties based on heparinized silk fibroin and chitosan. Colloids and Surfaces B: Biointerfaces, 2011, 85(2): 241–247
https://doi.org/10.1016/j.colsurfb.2011.02.035 pmid: 21459560
28 Tadic D, Epple  M. A thorough physicochemical characterization of 14 calcium phosphate-based bone substitution materials in comparison to natural bone. Biomaterials, 2004, 25(6): 987–994
https://doi.org/10.1016/S0142-9612(03)00621-5 pmid: 14615163
29 Clem W C, Chowdhury  S, Catledge S A , et al.. Mesenchymal stem cell interaction with ultra-smooth nanostructured diamond for wear-resistant orthopaedic implants. Biomaterials, 2008, 29(24–25): 3461–3468
https://doi.org/10.1016/j.biomaterials.2008.04.045 pmid: 18490051
30 Hu Y, Cai  K, Luo Z , et al.. Surface mediated in situ differentiation of mesenchymal stem cells on gene-functionalized titanium films fabricated by layer-by-layer technique. Biomaterials, 2009, 30(21): 3626–3635
https://doi.org/10.1016/j.biomaterials.2009.03.037 pmid: 19371947
31 Birdi-Chouhan G, Shelton  R M, Bowen  J, et al.. Soluble silicon patterns and templates: calcium phosphate nanocrystal deposition in collagen type 1. RSC Advances, 2016, 6(102): 99809–99815
https://doi.org/10.1039/C6RA19784A
32 Bhuiyan D, Jablonsky  M J, Kolesov  I, et al.. Novel synthesis and characterization of a collagen-based biopolymer initiated by hydroxyapatite nanoparticles. Acta Biomaterialia, 2015, 15: 181–190
https://doi.org/10.1016/j.actbio.2014.11.044 pmid: 25481742
33 Li G, Chen  Z Q, Wu  X H, et al.. Study of adherence of normal oral bacteria on polymethyl methyacrylate containing silver-supported silicate inorganic antibacteria. West China Journal of Stomatology, 2007, 25(3): 280–284 (in Chinese)
pmid: 17629208
34 Kundu B, Rajkhowa  R, Kundu S C , et al.. Silk fibroin biomaterials for tissue regenerations. Advanced Drug Delivery Reviews, 2013, 65(4): 457–470
https://doi.org/10.1016/j.addr.2012.09.043 pmid: 23137786
35 Nazarov R, Jin  H J, Kaplan  D L. Porous 3-D scaffolds from regenerated silk  fibroin. Biomacromolecules, 2004, 5(3): 718–726
https://doi.org/10.1021/bm034327e pmid: 15132652
36 Li L, Guan  Y, Liu H , et al.. Silica nanorattle-doxorubicin-anchored mesenchymal stem cells for tumor-tropic therapy. ACS Nano, 2011, 5(9): 7462–7470
https://doi.org/10.1021/nn202399w pmid: 21854047
37 Wu C, Chang  J. A review of bioactive silicate ceramics. Biomedical Materials, 2013, 8(3): 032001
https://doi.org/10.1088/1748-6041/8/3/032001 pmid: 23567351
38 Han P, Wu  C, Xiao Y . The effect of silicate ions on proliferation, osteogenic differentiation and cell signalling pathways (WNT and SHH) of bone marrow stromal cells.  Biomaterials Science, 2013, 1(4): 379–392
[1] Jin-Ning WANG,Bin PI,Peng WANG,Xue-Feng LI,Hui-Lin YANG,Xue-Song ZHU. Sustained release of Semaphorin 3A from α-tricalcium phosphate based cement composite contributes to osteoblastic differentiation of MC3T3-E1 cells[J]. Front. Mater. Sci., 2015, 9(3): 282-292.
[2] Zhi-Ye QIU, In-Sup NOH, Sheng-Min ZHANG. Silicate-doped hydroxyapatite and its promotive effect on bone mineralization[J]. Front Mater Sci, 2013, 7(1): 40-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed