Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2017, Vol. 11 Issue (2) : 171-181    https://doi.org/10.1007/s11706-017-0377-9
RESEARCH ARTICLE
Development of Al- and Cu-based nanocomposites reinforced by graphene nanoplatelets: Fabrication and characterization
Abdollah SABOORI(), Matteo PAVESE, Claudio BADINI, Paolo FINO
Department of Applied Science and Technology, Politecnico Di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
 Download: PDF(568 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Aluminum and copper matrix nanocomposites reinforced by graphene nanoplatelets (GNPs) were successfully fabricated by a wet mixing method followed by conventional powder metallurgy. The uniform dispersion of GNPs within the metal matrices showed that the wet mixing method has a great potential to be used as a mixing technique. However, by increasing the GNPs content, GNPs agglomeration was more visible. DSC and XRD of Al/GNPs nanocomposites showed that no new phase formed below the melting point of Al. Microstructural observations in both nanocomposites reveal the evident grain refinement effect as a consequence of GNPs addition. The interfacial bonding evaluation shows a poor interfacial bonding between GNPs and Al, while the interfacial bonding between Cu and GNPs is strong enough to improve the properties of the Cu/GNPs nanocomposites. In both composites, the coefficient of thermal expansion decreases as a function of GNPs while, their hardness is improved by increasing the GNPs content as well as their elastic modulus.

Keywords nanocomposite      aluminum      copper      graphene      microstructure      thermal expansion     
Corresponding Author(s): Abdollah SABOORI   
Online First Date: 04 May 2017    Issue Date: 26 May 2017
 Cite this article:   
Abdollah SABOORI,Matteo PAVESE,Claudio BADINI, et al. Development of Al- and Cu-based nanocomposites reinforced by graphene nanoplatelets: Fabrication and characterization[J]. Front. Mater. Sci., 2017, 11(2): 171-181.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-017-0377-9
https://academic.hep.com.cn/foms/EN/Y2017/V11/I2/171
Fig.1  The corresponding flow chart of the nanocomposite powder mixture preparation.
Fig.2  SEM images of (a) as-received GNPs and (b) pure Al powder.
Fig.3  EDS mapping of Al-1 wt.% GNPs nanocomposites.
Fig.4  (a) DSC curves of pure Al and Al-2 wt.% GNPs and (b) the XRD pattern of Al-2 wt.% GNPs after thermal analysis.
Fig.5  SEM images of (a) Al-0.5 wt.% GNPs and (b) Al-1 wt.% GNPs. (c) EDS of selected point at a grain boundary and (d) a grain boundary in Al-1 wt.% GNPs nanocomposite.
Fig.6  EDS results of Al-1 wt.% GNPs nanocomposite.
Fig.7  (a) Vickers hardness vs. GNPs content and (b) CTE vs. temperature of Al-x GNPs (x = 0, 0.5, 1.0 wt.%).
Fig.8  Comparison between experimental data and theoretical calculations of Young’s moduli Ec and E|| for Al/GNP composites as function of the GNPs content.
Fig.9  SEM images of pure Cu powder with the sub-image showing EDS analysis of the selected point.
Fig.10  (a)(b)(c) SEM images of Cu-2 wt.% GNPs composite powder mixture and (d) corresponding EDS analysis of the selected area.
Fig.11  The XRD pattern of Cu-2 wt.% GNPs after sintering at 950°C for 2 h.
Fig.12  SEM images of (a) Cu-1 wt.% GNPs, (b) Cu-2 wt.% GNPs, (c) a grain boundary in Cu-1 wt.% GNPs, and (d) an interface of Cu/GNPs with the corresponding linear EDS analysis.
Fig.13  (a) Vickers hardness vs. GNPs content and (b) CTE vs. temperature of Cu-x GNPs (x = 0, 1, 2 wt.%).
Fig.14  Comparison between experimental data and theoretical calculations of Young’s moduli Ec and E|| for Cu/GNPs composites as function of the GNPs content.
1 Geim A K, Novoselov  K S. The rise of graphene. Nature Materials, 2007, 6(3): 183–191
https://doi.org/10.1038/nmat1849 pmid: 17330084
2 Castro Neto A H ,  Guinea F ,  Peres N M R , et al.. The electronic properties of graphene. Reviews of Modern Physics, 2009, 81(1): 109–162
https://doi.org/10.1103/RevModPhys.81.109
3 Balandin A A. Thermal properties of graphene and nanostructured carbon materials. Nature Materials, 2011, 10(8): 569–581
https://doi.org/10.1038/nmat3064 pmid: 21778997
4 Molitor F, Güttinger  J, Stampfer C , et al.. Electronic properties of graphene nanostructures. Journal of Physics: Condensed Matter, 2011, 23(24): 243201
https://doi.org/10.1088/0953-8984/23/24/243201 pmid: 21613728
5 Ovid’ko I A . Review on grain boundaries in graphene. Curved poly- and nanocrystalline graphene structures as new carbon allotropes. Reviews on Advanced Materials Science, 2012, 30(3): 201–224
6 Rashad M, Pan  F, Yu Z , et al.. Investigation on microstructural, mechanical and electrochemical properties of aluminum composites reinforced with graphene nanoplatelets. Progress in Natural Science: Materials International, 2015, 25(5): 460–470
https://doi.org/10.1016/j.pnsc.2015.09.005
7 Rashad M, Pan  F, Hu H , et al.. Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets. Materials Science and Engineering A, 2015, 630: 36–44
https://doi.org/10.1016/j.msea.2015.02.002
8 Rashad M, Pan  F, Tang A , et al.. Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method. Progress in Natural Science: Materials International, 2014, 24(2): 101–108
https://doi.org/10.1016/j.pnsc.2014.03.012
9 Kuilla T, Bhadra  S, Yao D , et al.. Recent advances in graphene based polymer composites. Progress in Polymer Science, 2010, 35(11): 1350–1375
https://doi.org/10.1016/j.progpolymsci.2010.07.005
10 Potts J R, Dreyer  D R, Bielawski  C W, et al.. Graphene-based polymer nanocomposites. Polymer, 2011, 52(1): 5–25
https://doi.org/10.1016/j.polymer.2010.11.042
11 Tapasztó O, Tapasztó  L, Markó M , et al.. Dispersion patterns of graphene and carbon nanotubes in ceramic matrix composites. Chemical Physics Letters, 2011, 511(4–6): 340–343
https://doi.org/10.1016/j.cplett.2011.06.047
12 Walker L S, Marotto  V R, Rafiee  M A, et al.. Toughening in graphene ceramic composites. ACS Nano, 2011, 5(4): 3182–3190
https://doi.org/10.1021/nn200319d pmid: 21443241
13 Kvetková L, Duszová  A, Hvizdoš P , et al.. Fracture toughness and toughening mechanisms in graphene platelet reinforced Si3N4 composites. Scripta Materialia, 2012, 66(10): 793–796
https://doi.org/10.1016/j.scriptamat.2012.02.009
14 Porwal H, Grasso  S, Reece M J . Review of graphene–ceramic matrix composites. Advances in Applied Ceramics, 2013, 112(8): 443–454
https://doi.org/10.1179/174367613X13764308970581
15 Centeno A, Rocha  V G, Alonso  B, et al.. Graphene for tough and electroconductive alumina ceramics. Journal of the European Ceramic Society, 2013, 33(15–16): 3201–3210
https://doi.org/10.1016/j.jeurceramsoc.2013.07.007
16 Saboori A, Pavese  M, Badini C , et al.. Acta Metallurgica Sinica (English Letters), 2017 (in press)
17 Nieto A, Lahiri  D, Agarwal A . Graphene NanoPlatelets reinforced tantalum carbide consolidated by spark plasma sintering. Materials Science and Engineering A, 2013, 582(11): 338–346
https://doi.org/10.1016/j.msea.2013.06.006
18 Ramirez C, Miranzo  P, Belmonte M , et al.. Extraordinary toughening enhancement and flexural strength in Si3N4 composites using graphene sheets. Journal of the European Ceramic Society, 2014, 34(2): 161–169
https://doi.org/10.1016/j.jeurceramsoc.2013.08.039
19 Fan Y, Estili  M, Igarashi G , et al.. The effect of homogeneously dispersed few-layer graphene on microstructure and mechanical properties of Al2O3 nanocomposites. Journal of the European Ceramic Society, 2014, 34(2): 443–451
https://doi.org/10.1016/j.jeurceramsoc.2013.08.035
20 Wang J, Li  Z, Fan G , et al.. Reinforcement with graphene nanosheets in aluminum matrix composites. Scripta Materialia, 2012, 66(8): 594–597
21 Chen L Y, Konishi  H, Fehrenbacher A , et al.. Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites. Scripta Materialia, 2012, 67(1): 29–32
https://doi.org/10.1016/j.scriptamat.2012.03.013
22 Koltsova T, Nasibulina  L I, Anoshkin  I V, et al.. New hybrid copper composite materials based on carbon nanostructures. Journal of Materials Science and Engineering B, 2012, 2(4): 240–246
23 Nasibulin A G ,  Koltsova T ,  Nasibulina L I , et al.. A novel approach to composite preparation by direct synthesis of carbon nanomaterial on matrix or filler particles. Acta Materialia, 2013, 61(6): 1862–1871
https://doi.org/10.1016/j.actamat.2012.12.007
24 Kim Y, Lee  J, Yeom M S , et al.. Strengthening effect of single-atomic-layer graphene in metal–graphene nanolayered composites. Nature Communications, 2013, 4: 2114
https://doi.org/10.1038/ncomms3114 pmid: 23820590
25 Hwang J, Yoon  T, Jin S H , et al.. Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Advanced Materials, 2013, 25(46): 6724–6729
https://doi.org/10.1002/adma.201302495 pmid: 23983045
26 Kuang D, Xu  L, Liu L , et al.. Graphene–nickel composites. Applied Surface Science, 2013, 273: 484–490
https://doi.org/10.1016/j.apsusc.2013.02.066
27 Rashad M, Pan  F, Tang A , et al.. Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium. Journal of Alloys and Compounds, 2014, 603(9): 111–118
https://doi.org/10.1016/j.jallcom.2014.03.038
28 Neubauer E, Kitzmantel  M, Hulman M , et al.. Potential and challenges of metal-matrix-composites reinforced with carbon nanofibers and carbon nanotubes. Composites Science and Technology, 2010, 70(16): 2228–2236
https://doi.org/10.1016/j.compscitech.2010.09.003
29 Babu J S S ,  Prabhakaran Nair K ,  Unnikrishnan G , et al.. Development of aluminum-based hybrid composites with graphite nanofibers/alumina short fibers: processing and characterization. Journal of Composite Materials, 2010, 44(16): 1929–1943
https://doi.org/10.1177/0021998309353958
30 Liu J, Khan  U, Coleman J , et al.. Graphene oxide and graphene nanosheet reinforced aluminium matrix composites: Powder synthesis and prepared composite characteristics. Materials & Design, 2016, 94: 87–94
https://doi.org/10.1016/j.matdes.2016.01.031
31 Mahesh V P, Nair  P S, Rajan  T P D, et al.. Processing of surface-treated boron carbide-reinforced aluminum matrix composites by liquid-metal stir-casting technique. Journal of Composite Materials, 2011, 45(23): 2371–2378
https://doi.org/10.1177/0021998311401086
32 Rohatgi P K, Gupta  N, Alaraj S . Thermal expansion of aluminum–fly ash cenosphere composites synthesized by pressure infiltration technique. Journal of Composite Materials, 2006, 40(13): 1163–1174
https://doi.org/10.1177/0021998305057379
33 Motozuka S, Tagaya  M, Ikoma T , et al.. Preparation of copper–graphite composite particles by milling process. Journal of Composite Materials, 2012, 46(22): 2829–2834
https://doi.org/10.1177/0021998311432947
34 Singhal S K, Lal  M, Sharma I , et al.. Fabrication of copper matrix composites reinforced with carbon nanotubes using a combination of molecular-level-mixing and high energy ball milling. Journal of Composite Materials, 2013, 47(5): 613–621
https://doi.org/10.1177/0021998312443397
35 Jagannadham K. Volume fraction of graphene platelets in copper–graphene composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44(1): 552–559
https://doi.org/10.1007/s11661-012-1387-y
36 Jagannadham K. Thermal conductivity of copper–graphene composite films synthesized by electrochemical deposition with exfoliated graphene platelets. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2012, 43(2): 316–324
https://doi.org/10.1007/s11663-011-9597-z
37 Rashad M, Pan  F, Tang A , et al.. Improved strength and ductility of magnesium with addition of aluminum and graphene nanoplatelets (Al+GNPs) using semi powder metallurgy method. Journal of Industrial and Engineering Chemistry, 2015, 23: 243–250
https://doi.org/10.1016/j.jiec.2014.08.024
38 Saboori A, Novara  C, Pavese M , et al.. An investigation on the sinterability and the compaction behavior of aluminum/graphene nanoplatelets (GNPs) prepared by powder metallurgy. Journal of Materials Engineering and Performance, 2017, 26(3): 993–999
https://doi.org/10.1007/s11665-017-2522-0
39 Zhou J, Wang  Q, Sun Q , et al.. Ferromagnetism in semihydrogenated graphene sheet. Nano Letters, 2009, 9(11): 3867–3870
https://doi.org/10.1021/nl9020733 pmid: 19719081
40 Kwon H, Kawasaki  A. In: Attaf B , ed. Advances in Composite Materials for Medicine and Nanotechnology. InTech, 2011, 429–444
41 Jamaati R, Amirkhanlou  S, Toroghinejad M R , et al.. Comparison of the microstructure and mechanical properties of as-cast A356/SiC MMC processed by ARB and CAR methods. Journal of Materials Engineering and Performance, 2012, 21(7): 1249–1253
https://doi.org/10.1007/s11665-011-0045-7
42 Kováčik J ,  Emmer Š . Thermal expansion of Cu/graphite composites: effect of copper coating. Kovove Materialy, 2011, 49(6): 411–416
43 Chawla N, Shen  Y. Mechanical behavior of particle reinforced metal matrix composites. Advanced Engineering Materials, 2001, 3(6): 357–370
https://doi.org/10.1002/1527-2648(200106)3:6<357::AID-ADEM357>3.0.CO;2-I
44 Chu K, Jia  C. Enhanced strength in bulk graphene–copper composites. Physica Status Solidi A: Applications and Materials Science, 2014, 211(1): 184–190
https://doi.org/10.1002/pssa.201330051
45 Lee C, Wei  X, Kysar J W , et al.. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385–388
https://doi.org/10.1126/science.1157996 pmid: 18635798
46 Dorfman S, Fuks  D. Carbon diffusion in copper-based metal matrix composites. Sensors and Actuators A: Physical, 1995, 51(1): 13–16
https://doi.org/10.1016/0924-4247(95)01062-9
[1] Shalmali BASU, Kamalika SEN. A review on graphene-based materials as versatile cancer biomarker sensors[J]. Front. Mater. Sci., 2020, 14(4): 353-372.
[2] Yue ZHANG, Yihong YU, Xiankai FU, Zhisen LIU, Yinglei LIU, Song LI. Light-switchable catalytic activity of Cu for oxygen reduction reaction[J]. Front. Mater. Sci., 2020, 14(4): 481-487.
[3] Zhenxiao LU, Wenxian WANG, Jun ZHOU, Zhongchao BAI. FeS2@C nanorods embedded in three-dimensional graphene as high-performance anode for sodium-ion batteries[J]. Front. Mater. Sci., 2020, 14(3): 255-265.
[4] Kun YANG, Jinghuan TIAN, Wei QU, Bo LUAN, Ke LIU, Jun LIU, Likui WANG, Junhui JI, Wei ZHANG. Host-mediated biofilm forming promotes post-graphene pathogen expansion via graphene micron-sheet[J]. Front. Mater. Sci., 2020, 14(2): 221-231.
[5] Huan-Yan XU, Dan LU, Xu HAN. Graphene-induced enhanced anticorrosion performance of waterborne epoxy resin coating[J]. Front. Mater. Sci., 2020, 14(2): 211-220.
[6] Jinxing ZHANG, Kexing HU, Qi OUYANG, Qilin GUI, Xiaonong CHEN. One-step functionalization of graphene via Diels--Alder reaction for improvement of dispersibility[J]. Front. Mater. Sci., 2020, 14(2): 198-210.
[7] Yun ZHAO, Linan YANG, Canliang MA. One-step gas-phase construction of carbon-coated Fe3O4 nanoparticle/carbon nanotube composite with enhanced electrochemical energy storage[J]. Front. Mater. Sci., 2020, 14(2): 145-154.
[8] Danhua ZHU, Qianjie ZHOU, Aiqin LIANG, Weiqiang ZHOU, Yanan CHANG, Danqin LI, Jing WU, Guo YE, Jingkun XU, Yong REN. Two-step preparation of carbon nanotubes/RuO2/polyindole ternary nanocomposites and their application as high-performance supercapacitors[J]. Front. Mater. Sci., 2020, 14(2): 109-119.
[9] Wei WU, Fen ZHANG, Yu-Chao LI, Yong-Feng ZHOU, Qing-Song YAO, Liang SONG, Rong-Chang ZENG, Sie Chin TJONG, Dong-Chu CHEN. Corrosion resistance of a silane/ceria modified Mg--Al-layered double hydroxide on AA5005 aluminum alloy[J]. Front. Mater. Sci., 2019, 13(4): 420-430.
[10] Wei SUN, Rui ZHAO, Tian WANG, Ke ZHAN, Zheng YANG, Bin ZHAO, Ya YAN. An approach to prepare uniform graphene oxide/aluminum composite powders by simple electrostatic interaction in water/alcohol solution[J]. Front. Mater. Sci., 2019, 13(4): 375-381.
[11] Yanlin JIA, Zhiyuan MA, Zhicheng LI, Zhenli HE, Junming SHAO, Hong ZHANG. Electrochemical performances of NiO/Ni2N nanocomposite thin film as anode material for lithium ion batteries[J]. Front. Mater. Sci., 2019, 13(4): 367-374.
[12] Liuxin YANG, Zhou CHEN, Jian ZHANG, Chang-An WANG. SrTiO3/TiO2 heterostructure nanowires with enhanced electron--hole separation for efficient photocatalytic activity[J]. Front. Mater. Sci., 2019, 13(4): 342-351.
[13] Xia HE, Qingchun LIU, Jiajun WANG, Huiling CHEN. Wearable gas/strain sensors based on reduced graphene oxide/linen fabrics[J]. Front. Mater. Sci., 2019, 13(3): 305-313.
[14] Ram Sevak SINGH, Anurag GAUTAM, Varun RAI. Graphene-based bipolar plates for polymer electrolyte membrane fuel cells[J]. Front. Mater. Sci., 2019, 13(3): 217-241.
[15] Chengzhi LUO, Guanghui LIU, Min ZHANG. Electric-field-induced microstructure modulation of carbon nanotubes for high-performance supercapacitors[J]. Front. Mater. Sci., 2019, 13(3): 270-276.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed